
version 1.7

Getting Started
with Replay Engine

Copyright © 2010 by TotalView Technologies. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise without the prior written permission of TotalView Technologies.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013.

TotalView Technologies has prepared this manual for the exclusive use of its customers, personnel, and licensees. The infor-
mation in this manual is subject to change without notice, and should not be construed as a commitment by TotalView Tech-
nologies. TotalView Technologies assumes no responsibility for any errors that appear in this document.

TotalView and TotalView Technologies are registered trademarks of TotalView Technologies.

TotalView uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use these
modifications. The source code is available at:
ftp://ftp.totalviewtech.com/support/toolworks/Microline_totalview.tar.Z.

All other brand names are the trademarks of their respective holders.

Getting Started with ReplayEngine: version 1.7 iii

Contents

Understanding ReplayEngine
ReplayEngine Overview ...2

System Resources ReplayEngine Uses ...2
Replaying Your Program ..3
Threads and Processes ...4
Attaching to Running Programs ..4

Using ReplayEngine ...5
Setting Preferences ...6
CLI Support ...8
Known Limitations and Issues ..9

Limitations: ...9
Performance Issues ...11

Contents

Getting Started with ReplayEngine

ReplayEngine: version 1.7 1

Understanding
ReplayEngine

TotalView Technologies ReplayEngine:
A New Paradigm in Debugging

The hardest step in locating software bugs centers on working back-
ward from a failure to the error that caused it. Conventional debug-
ging techniques do not make it easy to find the cause of an error as
they allow you to control program execution only in the forward
direction.

Instead of going back to the beginning to try to recreate the condi-
tions of a problem, ReplayEngine lets you start from the point of
failure and work backward in time to find the cause. Recreating the
conditions of a crash, sometimes the hardest problem in conven-
tional forward debugging, is no longer necessary. You can now move
to locate errors that occurred long before the failure they caused.

ReplayEngine is embedded within TotalView, which means you must
know how to use TotalView. TotalView documentation is available ,
on our web site at http://www.totalviewtech.com.

ReplayEngine Overview

2 Chapter 1: Understanding ReplayEngine

ReplayEngine Overview

ReplayEngine lets you move backward in your program. To do this, it saves
state information as your program executes. This information includes the
order in which your program executes and changes to its data. When
ReplayEngine is saving state information, it is in its record mode.

The saved state information is the program’s execution history.

Using a ReplayEngine command shifts ReplayEngine into its replay mode. In
this mode, you can move to any previously executed statement. When you
move to one of these statements, ReplayEngine displays its saved state
information. The information you see in replay mode is identical to the
information that you saw in record mode.

Most debugging commands work the same in replay mode as they do in
record mode. Commands such as diving on a variable or setting a break-
point work as you would expect them to. The debugging commands that
do not work are those that change or alter a recorded state. Typically, these
are commands that:

Change a variable’s value.
Call functions that alter memory.
Run threads asynchronously.

If your program calls a routine that displays information, the routine will
not display this information. For example, suppose your program calls
printf(). When the printf() is executed in record mode, it writes text. How-
ever, when the printf() is replayed, this text is not rewritten. Similarly, if your
program unlinks a file in record mode; the file will not be linked before the
unlink statement when you are in replay mode.

When executing in record mode, your program runs slower than it would
run if you were not using ReplayEngine. Usually, you will not notice the
extra execution time. However, when you are in replay mode, the computa-
tional overhead required to recreate the program’s state may be notice-
able. When it needs extra time, ReplayEngine displays a dialog box that
allows you to cancel the operation.

System Resources ReplayEngine Uses

ReplayEngine writes internal information in /tmp. Normally, very little space
is used for this, but there are some situations where it can grow large, and
if your system has a small /tmp area, ReplayEngine may fill it up. If this
occurs, you can:

Increase the amount of storage allocated to /tmp.
Use the TMPDIR environment variable to point to another disk location.

ReplayEngine Overview

Getting Started with ReplayEngine: version 1.7 3

Define a special TotalView variable, TVD_REPLAY_TMPDIR, for Replay-
Engine to use as the base directory for writing its temporary information.
For example:
setenv TVD_REPLAY_TMPDIR /home/user/smith/replayTempDir

ReplayEngine also changes the amount of memory your program uses as it
keeps history and state information in memory. For information on control-
ling the history information storage, see “Setting Preferences” on page 6.

While in replay mode. ReplayEngine creates extra processes, usually
around ten, but you may see up to thirty. You should ignore these pro-
cesses as they are only used by ReplayEngine.

Replaying Your Program

Before you replay your program’s statements, you must stop your pro-
gram’s execution. You can do this by halting your program or TotalView can
stop execution when your program encounters a breakpoint. When execu-
tion stops, TotalView ungrays the ReplayEngine buttons you can use on its
tool bar. (See Figure 1.)

The ReplayEngine commands are as follows:

GoBack, which tells ReplayEngine to display the state that existed at the
last action point. If no action point is encountered, ReplayEngine dis-
plays the state that existed at the start of its recorded history.
Prev, which tells ReplayEngine to display the state that existed when the
previous statement executed. If that line had a function call, Prev skips
over the call.
Unstep, which tells ReplayEngine to display the state that existed when
the previous statement executed. If that line had a function call,
ReplayEngine moves to the last statement in that function.
Caller, which tells ReplayEngine to display the state that existed before
the current routine was called.
BackTo, which tells ReplayEngine to display the program’s state for the
line you select. This line must have executed prior to the currently dis-
played line. If you wish to move forward within replay mode, select a line
and select the Run To button.
Live, which tells ReplayEngine to shift from replay mode to record mode.
It also displays the statement that would have executed if you had not
moved into ReplayMode.

Figure 1: ReplayEngine Tool
Bar Commands

ReplayEngine Overview

4 Chapter 1: Understanding ReplayEngine

The ReplayEngine tool bar commands only appear if you are using TotalView on a
Linux-x86 or Linux-x86-64 machine. On these platforms, these buttons are perma-
nently grayed out if you do not have a ReplayEngine license.

When you need to move forward within the program’s history, you can use
the Step, Next, Run To, and Out buttons. These commands do the same
thing in replay or record modes.

You can also set breakpoints in previously executed statements. After set-
ting a breakpoint, pressing the Go button will move you to that statement.
You can transform a breakpoint to an eval point if the eval point uses sim-
ple expressions such as “if (x==y+z) $stop”. You cannot, however, cre-
ate barrier points.

If you reach the line that would have been executed if you hadn’t gone into
replay mode, you are automatically switched back to record mode and you
can then resume program execution. You can also switch back to record
mode by pressing the Live button.

Threads and Processes

ReplayEngine runs one thread at a time, and it decides which thread will
run in a multi-threaded or multi-process program. In record mode,
ReplayEngine saves state information for each thread as it executes.

The order in which threads originally execute cannot be changed when you
are in replay mode. In replay mode, all actions that occur must be in the
same order as previously occurred.

If you need to control the way threads execute, use the TotalView asyn-
chronous threading commands while in record mode. Using these com-
mands you can:

Single-step a process or lockstep group.
Hold threads so they do not run.

If you are in replay mode, you cannot hold a thread or a process as they
run in the same order as they ran originally.

Attaching to Running Programs

If you attach to a program, ReplayEngine begins recording that program’s
execution at the time you attached to it. This means that you cannot go
back further than when you attached to it.

Using ReplayEngine

Getting Started with ReplayEngine: version 1.7 5

Using ReplayEngine

There is very little difference between running TotalView and running
ReplayEngine. The first step is enabling ReplayEngine. Do this by selecting
Enable Replay Engine in the File > New Program dialog box or in the
Process > Startup Parameters dialog box. Figure 2 shows the New Program
dialog box.

If you are using the New Program dialog box, ReplayEngine begins record-
ing instructions when you begin execution. If you are using the Startup
Parameters dialog box, ReplayEngine is enabled when you restart your pro-
gram.

You can also enable ReplayEngine by using the TotalView –replay com-
mand-line option.

After enabling ReplayEngine, you can begin controlling your program’s exe-
cution using the same execution commands you use when ReplayEngine is
not enabled. For example, you might set a breakpoint and press the Go
button or select a line and press the Run To button.

When you wish to view the program’s state, halt your program, then use the
GoBack, Prev, UnStep, Caller, or BackTo buttons to go to the statement you
wish to examine. These four buttons are similar to the Next, Step, Out, and
Run To tool bar buttons, differing only in that the Replay buttons go back-
wards in the program’s history. The Debug pull-down menu contains the
menu bar equivalents to these commands.

Figure 2: Enabling using
the File > New
Command Dialog
Box

Setting Preferences

6 Chapter 1: Understanding ReplayEngine

While you are in replay mode, notice that the Next, Step, Out, and Run To
tool bar buttons are still displayed. This is because pressing these buttons
moves you forward in the history.

When you’re in replay mode, TotalView changes the highlight line from yel-
low to orange within the Source Pane. (See Figure 3.).

The Process window always shows the last line executed within record
mode using the symbol and the yellow highlight line is on the same line
as this symbol. When you are in replay mode, this symbol is where
ReplayEngine shifts from replay mode to record mode.

The scoping commands at the far left side of the tool bar have no effect in
replay mode as the ReplayEngine only supports process width.

Setting Preferences

Use the ReplayEngine tab in the Preferences dialog box to define how
ReplayEngine handles recorded history.

The Maximum history size option sets the size in megabytes for Replay-
Engine’s history buffer. The default value, Unlimited, means ReplayEngine
will use as much memory as is available to save recorded history. You can
enter a new value into the text field or select from a drop-down list.(See
Figure 5.)

Figure 3: Source Pane While
ReplayEngine is in Replay
Mode

Setting Preferences

Getting Started with ReplayEngine: version 1.7 7

You can also set these options using the CLI as follows:

For example:

dset TV::replay_history_size 1024M

sets the maximum history size to 1024 megabytes.
dset TV::replay_history_size 1000000

Figure 4: Preferences
Dialog Box>
ReplayEngine Page

Figure 5: Preferences
Dialog Box>
ReplayEngine Page
Drop-Down

CLI: dset TV::replay_history_size <value>

CLI Support

8 Chapter 1: Understanding ReplayEngine

sets the maximum history size to 1000000 bytes.

The second option on the ReplayEngine preference page defines the tool’s
behavior when the history buffer is full. By default, the oldest history will be
discarded so that recording can continue. You can change that so that the
recording process will simply stop when the buffer is full.

You can also control this behavior using the CLI as follows:

For example:

dset TV::replay_history_mode 1

sets the mode to discard the oldest history and continue recording.
dset TV::replay_history_mode 2

sets the mode to stop the process when the buffer is full.

CLI Support

The dload and dattach CLI commands have the -replay option for en-
abling and disabling ReplayEngine. For example:
dload -replay myProgram

The dgo, dnext, dnexti, dout, dstep, dstepi, and duntil commands let you
step or run backwards by using the -back option. For example:
dnext -back
duntil -back 22

The dhistory command has the following options:
-info Dumps useful information about ReplayEngine.

-get_time Displays the current time. The output of this command
shows an integer value followed by an address. The
first integer value is a virtual timestamp. This virtual
timestamp does not refer to the exact point in time; it
has a granularity that is typically a few lines of code.
The address value is a PC value that corresponds to a
precise point within that block of code.

-go_time time Moves the process to an execution point represented
by the time argument. The time argument is a virtual
timestamp as reported by dhistory -get_time. You can-
not use this command to move to a specific instruction
but you can use it to get to within a small block of code
(usually within a few lines of your intended point in exe-
cution history). This command is typically used either
for roughly bookmarking a point in a code or for
searching execution history. It may need to be com-

CLI: dset TV::replay_history_mode <1,2>

Known Limitations and Issues

Getting Started with ReplayEngine: version 1.7 9

bined with stepping and duntil commands to return to
an exact position.

-go_live Resets the process back to record mode.

-enable Enables ReplayEngine for the next restart for the pro-
cess.

-disable Disables Replay Engine for the next restart for the pro-
cess.

These CLI commands are explained in detail in the TotalView Reference Guide.

Known Limitations and Issues

Limitations:

Obscure instructions: Use of AMD 3DNow! and other extended AMD
instructions is not supported (though Intel SSE, SSE2, SSE3 and SSE4
instructions are supported). Instructions that modify CS, DS, ES or SS
registers are also not supported.
AsyncIO: ReplayEngine does not support asynchronous IO operations.
io_cancel, io_destroy, io_getevents, ioperm, iopl, io_setup, and io_submit
system calls are all unsupported.
Exec: ReplayEngine does not support the execve syscall, as used by
libc's execl(), execlp(), execle(), execv(), execvp(), and execve() functions. If
the target program attempts to issue this system call, forward execution
will not be possible beyond this point (though reverse execution is still
possible).
Obscure system calls: Certain rarely used system calls are not sup-
ported. If the target program attempts to issue an unsupported system
call, forward execution will not be possible beyond this point (though re-
verse execution is still possible). The following system calls are either es-
oteric or obsolete, and only maintained in the kernel for backward com-
patibility with binaries written for early 2.x series kernels: ssetmask,
modify_ldt, pivot_root, vm86, and unshare.
Use of setrlimit(): If the target program uses setrlimit to reduce the
amount of memory, processes, or other resources consumed, Replay-
Engine may not be able to operate properly due to lack of resources.
Use of x86 inter-segment (aka 'far') jumps/calls: ReplayEngine does
not support the use of far jumps/calls in the target program. Any such at-
tempt will result in forward execution not being able to continue from
the point at which the far jump/call instruction is issued.
Non-executable memory: ReplayEngine ignores the executable status
of memory when running code, so code that would usually fail because it
is in non-executable memory will run successfully.
Disk usage: Depending on the target program, ReplayEngine can create
large temporary files within /tmp. See “System Resources ReplayEngine Uses”

Known Limitations and Issues

10 Chapter 1: Understanding ReplayEngine

on page 2 for information on how to use alternative temporary directo-
ries.
Statically-linked target programs: ReplayEngine cannot start a stati-
cally-linked target program. However, it can attach to an existing stati-
cally-linked target program process.
Self-modifying code: Self-modifying code is supported as long as the
target program executes at least one branch instruction between the
writing of the code and its execution.
Shared memory accesses straddling valid and invalid pages: Ac-
cessing shared memory where the instruction's operand straddles a page
boundary such that the first part of the operand is in accessible shared
memory, but the second part is in mapped shared memory which is not
backed by a valid shared object (e.g. because the file which is mapped
has been truncated) should receive signal SIGBUS. Under ReplayEngine, a
target program making such an access will not receive SIGBUS but will
read zeroes for the part of the operand that straddles into unbacked
memory. Note that normal attempted access to shared memory not
backed by a shared object will generate a SIGBUS as normal; the issue is
only with a single instruction's access that lies half in valid memory and
half in invalid memory that should generate a SIGBUS.
Breakpoints: All breakpoints used with ReplayEngine work like hard-
ware breakpoints. In particular, if the code where the breakpoint resides
is not modified, writing to that code will not remove the breakpoint, and
setting a breakpoint that is not at the first byte of an instruction will have
no effect.
System call output buffers: Any system calls that write to memory
must be passed a buffer entirely within writable memory. For example, if
read() is passed an 8k buffer of which only the first 4k is in user-writable
memory, if that read() would normally return 4k or fewer characters then
natively it may succeed, but on ReplayEngine it will fail with EFAULT. If a
system call that writes to memory is passed a buffer which is not in writ-
able memory at all, but fails for some other reason before the kernel tries
to write to the buffer, then natively it may fail with some error other than
EFAULT, but on ReplayEngine it may fail with EFAULT. If two buffers which
overlap are passed to a system call which writes to both of them or reads
from one and writes to the other, the behavior in ReplayEngine may dif-
fer from the native behavior (although behavior in such cases is liable to
vary between kernel versions, too.)
Adjust Flag: According to the Intel manuals, the state of the Adjust Flag
(AF) after some instructions is "undefined." On some processor models,
different executions of the same code can produce different states of AF.
If the behavior of a program depends on the state of AF when it is sup-
posed to be undefined, the program may not run correctly with Replay-
Engine.
SIGCHLD while attaching: If a SIGCHLD arrives for a process while Re-
playEngine is in the middle of attaching to the process, the SIGCHLD may
be silently lost. Once the process has been attached to, SIGCHLD is han-
dled normally.

Known Limitations and Issues

Getting Started with ReplayEngine: version 1.7 11

Performance Issues

High TLB rates with certain multi-threaded target programs

When reverse debugging an application in which many threads make fre-
quent system calls on a multi-processor platform, binding the application
process to a single processor can improve performance. This is because
such applications put stress on ReplayEngine's heap management, which
in turn stresses the processor's TLB (translation lookaside buffer). If the
application is bound to a single processor, it is less likely to suffer TLB
misses caused by process migration. Since user threads are automatically
serialized during reverse debugging, there is no loss of concurrency due to
binding.

 If the application is to be launched under TotalView, one way to accom-
plish binding is to preface the TotalView command with a taskset(1) com-
mand specifying a single processor. For example:
taskset --cpu-list 3 totalview -replay myapp

 To accomplish binding when TotalView is to be attached to a running
application, find the PID (process identifier) of the application process, and
use taskset to bind that process to a single processor before attaching to it
with TotalView. For example:
taskset --pid --cpu-list 3 <PID of myapp>

We have noticed the need for such binding when debugging MySQL appli-
cations with ReplayEngine.

Avoiding self-contention in OpenMP target programs

Because threads are serialized during reverse debugging, OpenMP imple-
mentations that use non-yielding spins for synchronization can experience
self-contention, resulting in poor performance. ReplayEngine has internal
knowledge of several OpenMP implementations and tries to avoid this situ-
ation. Since this aspect of OpenMP is somewhat loosely standardized,
however, ReplayEngine may not always be able to avoid self-contention.

For the Portland Group compilers in particular, ReplayEngine uses environ-
ment variables to avoid self-contention. It inserts the settings
OMP_WAIT_POLICY=ACTIVE and MP_SPIN=0 into the environment. The
effects are, respectively, to cause idle threads to wait using a semaphore
check loop, and to cause the semaphore check loop to call sched_yield in
every iteration. If the user has pre-set either of these environment vari-
ables, ReplayEngine will not alter the settings.

Known Limitations and Issues

12 Chapter 1: Understanding ReplayEngine

Getting Started with Replay Engine: version 1.7 13

Index

C
creating extra processes 3

D
Debug pull-down menu 5
dload –replay and –noreplay options 8
dnext and dnexti –back command-line

options 8

E
enabling

in File > New Program dialog box
5

Process >Startup Parameters dia-
log box 5

using –replay command-line op-
tion 5

extra processes 3

L
library and system calls 2

R
record versus checkpoint 4
–replay command-line option 5

S
switching to record mode 4
system and library calls 2

T
tool bar buttons 5

U
using ReplayEngine 5

U

14 Getting Started with Replay Engine: version 1.7

	Contents
	Understanding ReplayEngine
	ReplayEngine Overview
	System Resources ReplayEngine Uses
	Replaying Your Program
	Threads and Processes
	Attaching to Running Programs

	Using ReplayEngine
	Setting Preferences
	CLI Support
	Known Limitations and Issues
	Limitations:
	Performance Issues

	Index

