
version 8.8

TotalView
Users Guide

Copyright © 2007–2010 by TotalView Technologies. All rights reserved
Copyright © 1998–2007 by Etnus LLC. All rights reserved.
Copyright © 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright © 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise without the prior written permission of TotalView Technologies.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013.

TotalView Technologies has prepared this manual for the exclusive use of its customers, personnel, and licensees. The infor-
mation in this manual is subject to change without notice, and should not be construed as a commitment by TotalView Tech-
nologies. TotalView Technologies assumes no responsibility for any errors that appear in this document.

TotalView and TotalView Technologies are registered trademarks of TotalView Technologies.

TotalView uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use these
modifications. The source code is available at:
ftp://ftp.totalviewtech.com/support/toolworks/Microline_totalview.tar.Z.

All other brand names are the trademarks of their respective holders.

TotalView Users Guide: version 8.8 iii

Book Overview

part I - Introduction
1 Getting Started with TotalView ..3

2 About Threads, Processes, and Groups..............................15

part II - Setting Up
3 Getting Started with Remote Display Client....................35

4 Setting Up a Debugging Session ..53

5 Setting Up Remote Debugging Sessions85

6 Setting Up MPI Debugging Sessions103

7 Setting Up Parallel Debugging Sessions137

part III - Using the GUI
8 Using TotalView Windows...169

9 Visualizing Programs and Data ...183

part IV - Using the CLI
10 Using the CLI ...201

11 Seeing the CLI at Work ...215

part V - Debugging
12 Debugging Programs ..225

13 Using Groups, Processes, and Threads253

14 Examining and Changing Data..281

15 Examining Arrays ..335

16 Setting Action Points...351

17 Evaluating Expressions ...383

Glossary ..399

Index ..413

iv Book Overview

TotalView Users Guide: version 8.8 v

Contents

About This Book
TotalView Family Differences ..xxiii
How to Use This Book ..xxv
Using the CLI ...xxvi
Audience ...xxvi
Conventions ... xxvii
TotalView Documentation .. xxviii
Contacting Us ...xxix

part I - Introduction

1 Getting Started with TotalView
Getting Started ... 3

Starting TotalView ... 4
What About Print Statements? ... 5
Examining Data .. 6
Examining Arrays .. 8
Seeing Groups of Variables .. 8
Setting Watchpoints ... 10

Debugging Multi-process and Multi-threaded Programs .. 10
Program Using Almost Any Execution Model ... 11
Supporting Multi-process and Multi-threaded Programs ... 11

Using Groups and Barriers .. 12
Memory Debugging ... 13
Introducing the CLI ... 14
What’s Next ... 14

2 About Threads, Processes, and Groups
A Couple of Processes .. 15
Threads ... 18
Complicated Programming Models ... 19
Types of Threads ... 20
Organizing Chaos .. 22
Creating Groups .. 26

vi Contents

Simplifying What You’re Debugging .. 30

part II - Setting Up

3 Getting Started with Remote Display Client
Using Remote Display ... 35

Installing the Client ... 36
Installing on Linux ... 36
Installing on Microsoft Windows .. 37
Installing on Apple Mac OS X Intel ... 37

Sample Session .. 39
Naming Intermediate Hosts ... 41

Submitting a Job to a Batch Queuing System .. 41
Setting Up Your Systems and Security ... 41
Session Profile Management .. 42

Sharing Profiles ... 43
Remote Display Server and Viewer ... 43
Batch Scripts .. 44

tv_PBS.csh Script .. 45
tv_LoadLeveler.csh Script .. 45

Remote Display Commands .. 46
Session Profiles Area .. 46

Remote Host and Routing Area .. 46
Product Area ... 48
Using the Submit to Batch Queuing System Entries .. 49
File > Profile > Save .. 50
File > Profile > Delete ... 50
File > Profile > Import ... 50
File > Profile > Export ... 51
File > Exit ... 51

4 Setting Up a Debugging Session
Compiling Programs .. 53

Using File Extensions .. 54
Starting TotalView ... 55

Initializing TotalView ... 58
Exiting from TotalView .. 60
Loading Programs ... 60

Loading Programs Using the GUI .. 61
Loading Programs Using the CLI .. 63
Attaching to Processes ... 63
Detaching from Processes .. 64
Examining Core Files .. 65
Setting Command-line Arguments and Environment Variables 67
Altering Standard I/O .. 67

Viewing Process and Thread States .. 68
Seeing Attached Process States ... 70
Seeing Unattached Process States ... 70

Handling Signals ... 71
Setting Search Paths ... 73
Setting Startup Parameters ... 76

TotalView Users Guide: version 8.8 vii

Setting Preferences ... 76
Setting Preferences, Options, and X Resources ... 82

5 Setting Up Remote Debugging Sessions
Setting Up and Starting the TotalView Server ... 85

Setting Single-Process Server Launch Options .. 87
Setting Bulk Launch Window Options .. 89

Starting the TotalView Server Manually .. 91
Using the Single-Process Server Launch Command ... 92
Bulk Server Launch Setting on an SGI Computer ... 93
Setting Bulk Server Launch on an HP Alpha Computer ... 95
Setting Bulk Server Launch on a Cray XT Series Computer .. 95
Setting Bulk Server Launch on an IBM RS/6000 AIX Computer 95

Disabling Autolaunch .. 96
Changing the Remote Shell Command .. 97
Changing Arguments .. 97
Autolaunching Sequence ... 98

Debugging Over a Serial Line .. 98
Starting the TotalView Debugger Server ... 100
Using the New Program Window ... 100

6 Setting Up MPI Debugging Sessions
Debugging MPI Programs .. 104

Starting MPI Programs .. 104
Starting MPI Programs Using File > New Program ... 104

Debugging MPICH Applications .. 106
Starting TotalView on an MPICH Job .. 106
Attaching to an MPICH Job .. 108
Using MPICH P4 procgroup Files .. 109

Debugging MPICH2 Applications .. 110
Downloading and Configuring MPICH2 .. 110

Starting the mpd Daemon .. 110
Starting TotalView Debugging on an MPICH2 Job .. 111

Starting MPI Issues .. 111
MPI Rank Display .. 112
Displaying the Message Queue Graph Window .. 113
Displaying the Message Queue ... 115

About the Message Queue Display .. 115
Using Message Operations ... 116

Diving on MPI Processes ... 116
Diving on MPI Buffers ... 117
About Pending Receive Operations .. 117
About Unexpected Messages ... 117
About Pending Send Operations .. 118

Debugging Cray MPI Applications ... 118
Debugging HP Tru64 Alpha MPI Applications ... 118

Starting TotalView on an HP Alpha MPI Job.. 118
Attaching to an HP Alpha MPI Job .. 119

Debugging HP MPI Applications ... 119
Starting TotalView on an HP MPI Job .. 120
Attaching to an HP MPI Job .. 120

viii Contents

Debugging IBM MPI Parallel Environment (PE) Applications .. 121
Preparing to Debug a PE Application.. 121

Using Switch-Based Communications.. 121
Performing a Remote Login .. 122
Setting Timeouts... 122

Starting TotalView on a PE Program ... 122
Setting Breakpoints .. 122
Starting Parallel Tasks ... 123
Attaching to a PE Job .. 123

Attaching from a Node Running poe .. 123
Attaching from a Node Not Running poe ... 124

Debugging IBM Blue Gene Applications ... 124
Debugging LAM/MPI Applications .. 125
Debugging QSW RMS Applications ... 126

Starting TotalView on an RMS Job .. 126
Attaching to an RMS Job... 127

Debugging SiCortex MPI Applications .. 127
Debugging SGI MPI Applications .. 127

Starting TotalView on an SGI MPI Job ... 128
Attaching to an SGI MPI Job ... 128
Using ReplayEngine with SGI MPI ... 128

Debugging Sun MPI Applications .. 129
Attaching to a Sun MPI Job .. 130

Debugging Parallel Applications Tips .. 130
Attaching to Processes ... 130

Parallel Debugging Tips .. 133
MPICH Debugging Tips ... 135
IBM PE Debugging Tips ... 135

7 Setting Up Parallel Debugging Sessions
Debugging OpenMP Applications ... 138

Debugging OpenMP Programs .. 138
About TotalView OpenMP Features .. 139
About OpenMP Platform Differences ... 139

Viewing OpenMP Private and Shared Variables .. 139
Viewing OpenMP THREADPRIVATE Common Blocks ... 141
Viewing the OpenMP Stack Parent Token Line .. 143

Using SLURM ... 143
Debugging IBM Cell Broadband Engine Programs .. 144

The PPU .. 145
The SPU .. 146
Cell Programing .. 146

PPU and SPU Executable Organization .. 146
PPU and SPU Executable Naming ... 146
Thread IDs ... 147

Breakpoints .. 147
Registers, Unions, and Casting ... 149

Debugging Cray XT Applications ... 150
Cray XT Catamount ... 150

Configuring TotalView ... 151
Using TotalView .. 152

TotalView Users Guide: version 8.8 ix

Cray XT CNL .. 152
Debugging SiCortex Applications ... 153

Installation Notes ... 153
Using TotalView on SiCortex .. 153
MPI Debugging .. 154

Debugging Global Arrays Applications ... 154
Debugging PVM (Parallel Virtual Machine) and DPVM Applications 157

Supporting Multiple Sessions ... 157
Setting Up ORNL PVM Debugging .. 158
Starting an ORNL PVM Session .. 158
Starting a DPVM Session .. 159
Automatically Acquiring PVM/DPVM Processes ... 160
Attaching to PVM/DPVM Tasks ... 161

About Reserved Message Tags ... 162
Cleaning Up Processes ... 162

Debugging Shared Memory (SHMEM) Code ... 162
Debugging UPC Programs ... 163

Invoking TotalView .. 163
Viewing Shared Objects .. 163
Displaying Pointer to Shared Variables .. 165

part III - Using the GUI

8 Using TotalView Windows
Using Mouse Buttons .. 169
Using the Root Window ... 170
Using the Process Window .. 173
Viewing the Assembler Version of Your Code ... 175
Diving into Objects ... 177
Resizing and Positioning Windows and Dialog Boxes ... 179
Editing Text ... 180
Saving the Contents of Windows .. 181

9 Visualizing Programs and Data
Displaying Call Graphs .. 183
Visualizing Array Data ... 185

Command Summary ... 185
How the Visualizer Works ... 186
Viewing Data Types in the Visualizer .. 186

Viewing Data ... 186
Visualizing Data Manually ... 187
Using the Visualizer .. 188

Using Dataset Window Commands ... 188
Using View Window Commands .. 189

Using the Graph Window .. 190
Displaying Graph Views .. 190

Using the Surface Window .. 191
Displaying Surface Views .. 193
Manipulating Surface Data ... 195

Visualizing Data Programmatically .. 196
Launching the Visualizer from the Command Line ... 197

x Contents

Configuring TotalView to Launch the Visualizer ... 197
Setting the Visualizer Launch Command .. 198

part IV - Using the CLI

10 Using the CLI
About the Tcl and the CLI ... 201

About The CLI and TotalView ... 202
Using the CLI Interface ... 203

Starting the CLI ... 203
Startup Example ... 204
Starting Your Program .. 205

About CLI Output ... 207
‘more’ Processing ... 208

Using Command Arguments ... 208
Using Namespaces .. 209
About the CLI Prompt ... 209
Using Built-in and Group Aliases .. 210
How Parallelism Affects Behavior ... 211

Types of IDs .. 211
Controlling Program Execution ... 212

Advancing Program Execution .. 212
Using Action Points .. 213

11 Seeing the CLI at Work
Setting the CLI EXECUTABLE_PATH Variable ... 216
Initializing an Array Slice ... 217
Printing an Array Slice ... 217
Writing an Array Variable to a File ... 219
Automatically Setting Breakpoints ... 220

part V - Debugging

12 Debugging Programs
Searching and Looking For Program Elements ... 225

Searching for Text ... 226
Looking for Functions and Variables .. 226
Finding the Source Code for Functions .. 227

Resolving Ambiguous Names ... 228
Finding the Source Code for Files .. 229
Resetting the Stack Frame .. 229

Editing Source Text ... 229
Manipulating Processes and Threads ... 230

Using the Toolbar to Select a Target .. 230
Stopping Processes and Threads ... 231
Using the Processes/Ranks Tab .. 231
Using the Threads Tab .. 232
Updating Process Information .. 233
Holding and Releasing Processes and Threads .. 233
Using Barrier Points .. 235

TotalView Users Guide: version 8.8 xi

Holding Problems ... 236
Examining Groups .. 237
Placing Processes in Groups ... 238
Starting Processes and Threads ... 238
Creating a Process Without Starting It .. 239
Creating a Process by Single-Stepping ... 239
Stepping and Setting Breakpoints .. 239

Using Stepping Commands .. 241
Stepping into Function Calls .. 242
Stepping Over Function Calls ... 242

Executing to a Selected Line .. 243
Executing Out of a Function ... 243
Continuing with a Specific Signal .. 244
Killing (Deleting) Programs .. 245
Restarting Programs .. 245
Checkpointing ... 246
Fine-Tuning Shared Library Use .. 247

Preloading Shared Libraries .. 247
Controlling Which Symbols TotalView Reads ... 248

Specifying Which Libraries are Read... 248
Reading Excluded Information ... 250

Setting the Program Counter .. 250
Interpreting the Status and Control Registers .. 252

13 Using Groups, Processes, and Threads
Defining the GOI, POI, and TOI ... 253
Setting a Breakpoint ... 254
Stepping (Part I) .. 255

Understanding Group Widths ... 256
Understanding Process Width .. 256
Understanding Thread Width .. 257
Using Run To and duntil Commands .. 257

Using P/T Set Controls .. 258
Setting Process and Thread Focus .. 259

Understanding Process/Thread Sets ... 259
Specifying Arenas ... 261
Specifying Processes and Threads ... 261

Defining the Thread of Interest (TOI) .. 261
About Process and Thread Widths ... 262

Specifier Examples.. 263
Setting Group Focus ... 264

Specifying Groups in P/T Sets ... 265
About Arena Specifier Combinations ... 266
‘All’ Does Not Always Mean ‘All’ .. 269
Setting Groups .. 270
Using the g Specifier: An Extended Example ... 271
Merging Focuses .. 273
Naming Incomplete Arenas .. 274
Naming Lists with Inconsistent Widths .. 275

Stepping (Part II): Examples .. 275
Using P/T Set Operators .. 277

xii Contents

Creating Custom Groups .. 278

14 Examining and Changing Data
Changing How Data is Displayed .. 281

Displaying STL Variables ... 282
Changing Size and Precision .. 284

Displaying Variables .. 285
Displaying Program Variables ... 286

Controlling the Information Being Displayed ... 287
Seeing Value Changes ... 287

Seeing Structure Information ... 289
Displaying Variables in the Current Block ... 289
Viewing Variables in Different Scopes as Program Executes 290

Scoping Issues .. 291
Freezing Variable Window Data .. 291
Locking the Address ... 291
Browsing for Variables .. 293
Displaying Local Variables and Registers ... 294
Dereferencing Variables Automatically .. 295
Examining Memory ... 296
Displaying Areas of Memory ... 298

Changing Types to Display Machine Instructions .. 299
Displaying Machine Instructions .. 299
Rebinding the Variable Window .. 300
Closing Variable Windows ... 300

Diving in Variable Windows ... 300
Displaying an Array of Structure’s Elements .. 302
Changing What the Variable Window Displays ... 303

Viewing a List of Variables ... 305
Entering Variables and Expressions ... 305
Seeing Variable Value Changes in the Expression List Window 307
Entering Expressions into the Expression Column .. 307
Using the Expression List with Multi-process/Multi-threaded Programs 309
Reevaluating, Reopening, Rebinding, and Restarting ... 309
Seeing More Information .. 310
Sorting, Reordering, and Editing .. 311

Changing the Values of Variables .. 312
Changing a Variable’s Data Type .. 313

Displaying C and C++ Data Types .. 314
Viewing Pointers to Arrays .. 316
Viewing Arrays ... 316
Viewing typedef Types .. 317
Viewing Structures .. 317
Viewing Unions ... 317
Casting Using the Built-In Types ... 317

Viewing Character Arrays ($string Data Type) ... 320
Viewing Wide Character Arrays ($wchar Data Types) .. 320
Viewing Areas of Memory ($void Data Type) .. 321
Viewing Instructions ($code Data Type) ... 322
Viewing Opaque Data ... 322

Type-Casting Examples .. 322

TotalView Users Guide: version 8.8 xiii

Displaying Declared Arrays ... 323
Displaying Allocated Arrays.. 323
Displaying the argv Array .. 323

Changing the Address of Variables ... 323
Displaying C++ Types ... 324

Viewing Classes ... 324
Displaying Fortran Types .. 326

Displaying Fortran Common Blocks ... 326
Displaying Fortran Module Data ... 326
Debugging Fortran 90 Modules .. 328
Viewing Fortran 90 User-Defined Types ... 329
Viewing Fortran 90 Deferred Shape Array Types .. 329
Viewing Fortran 90 Pointer Types ... 330
Displaying Fortran Parameters ... 331

Displaying Thread Objects .. 331
Scoping and Symbol Names ... 332

Qualifying Symbol Names .. 333

15 Examining Arrays
Examining and Analyzing Arrays ... 335

Displaying Array Slices ... 336
Using Slices and Strides .. 336
Using Slices in the Lookup Variable Command .. 338

Array Slices and Array Sections .. 338
Filtering Array Data Overview ... 339

..Filtering by Comparison 340

..Filtering for IEEE Values 341

..Filtering a Range of Values 343

..Creating Array Filter Expressions 343

..Using Filter Comparisons 344
Sorting Array Data .. 344
Obtaining Array Statistics ... 345

Displaying a Variable in all Processes or Threads ... 347
Diving on a “Show Across” Pointer .. 348
Editing a “Show Across” Variable ... 349

Visualizing Array Data ... 349
Visualizing a “Show Across” Variable Window .. 349

16 Setting Action Points
About Action Points ... 351
Setting Breakpoints and Barriers .. 353

Setting Source-Level Breakpoints .. 354
... Choosing Source Lines 354

Setting Breakpoints at Locations ... 355
Ambiguous Functions and Pending Breakpoints .. 356

Displaying and Controlling Action Points ... 357
Disabling Action Points .. 358
Deleting Action Points.. 358
Enabling Action Points ... 358
Suppressing Action Points ... 358

Setting Breakpoints on Classes and Virtual and Overloaded Functions 359

xiv Contents

Setting Machine-Level Breakpoints .. 360
Setting Breakpoints for Multiple Processes ... 361
Setting Breakpoints When Using the fork()/execve() Functions 363

Debugging Processes That Call the fork() Function.. 363
Debugging Processes that Call the execve() Function.. 363
Example: Multi-process Breakpoint ... 364

Setting Barrier Points .. 364
About Barrier Breakpoint States ... 365
Setting a Barrier Breakpoint .. 365
Creating a Satisfaction Set ... 366
Hitting a Barrier Point ... 367
Releasing Processes from Barrier Points .. 367
Deleting a Barrier Point ... 367
Changing Settings and Disabling a Barrier Point .. 367

Defining Eval Points and Conditional Breakpoints ... 368
Setting Eval Points .. 369
Creating Conditional Breakpoint Examples ... 370
Patching Programs .. 370

Branching Around Code ... 371
Adding a Function Call ... 371
Correcting Code.. 371

About Interpreted and Compiled Expressions ... 372
About Interpreted Expressions ... 372
About Compiled Expressions ... 372

Allocating Patch Space for Compiled Expressions .. 373
Allocating Dynamic Patch Space ... 373
Allocating Static Patch Space .. 374

Using Watchpoints .. 375
Using Watchpoints on Different Architectures ... 376
Creating Watchpoints ... 377

Displaying Watchpoints .. 378
Watching Memory ... 379
Triggering Watchpoints ... 379

Using Multiple Watchpoints .. 379
Copying Previous Data Values ... 380

Using Conditional Watchpoints .. 380
Saving Action Points to a File ... 382

17 Evaluating Expressions
Why is There an Expression System? .. 383

Calling Functions: Problems and Issues ... 385
Expressions in Eval Points and the Evaluate Window .. 385
Using C++ ... 386

Using Programming Language Elements ... 387
Using C and C++ .. 387

Using Fortran ... 389
Fortran Statements ... 389
Fortran Intrinsics .. 390

.. Using the Evaluate Window 391
Writing Assembler Code ... 392

Using Built-in Variables and Statements ... 396

TotalView Users Guide: version 8.8 xv

Using TotalView Variables ... 396
Using Built-In Statements ... 397

Glossary .. 399
INDEX .. 413

xvi Contents

TotalView Users Guide: version 8.8 xvii

Figures

Chapter 1: Getting Started with TotalView
Figure 1. The Process Window ..4
Figure 2. Action Point Properties Dialog Box ..5
Figure 3. Setting Conditions ...6
Figure 4. Patching Using an Eval Point ..7
Figure 5. Diving on a Structure and an Array ..8
Figure 6. Slicing and Filtering Arrays ...9
Figure 7. Visualizing an Array ..9
Figure 8. Tools > Expression List Window ...10
Figure 9. The Root Window ...11
Figure 10. Viewing Across Processes ..12
Figure 11. A Message Queue Graph ..12
Figure 12. Toolbar With Pulldown ...13
Figure 13. Process Tab ..13

Chapter 2: About Threads, Processes, and Groups
Figure 14. A Uniprocessor ...16
Figure 15. A Program and Daemons ...16
Figure 16. Mail Using Daemons to Communicate ..16
Figure 17. Two Computers Working on One Problem ...17
Figure 18. Threads ...18
Figure 19. Four-Processor Computer ..19
Figure 20. Four Processors on a Network ...20
Figure 21. Threads (again) ...20
Figure 22. User and Service Threads ...21
Figure 23. User, Service, and Manager Threads ..22
Figure 24. Five-Processes: Their Control and Share Groups ..23
Figure 25. Five Processes: Adding Workers and Lockstep Groups24
Figure 26. Five Processes and Their Groups on Two Computers ...25
Figure 27. Step 1: A Program Starts ..26
Figure 28. Step 1: A Program Starts ..26
Figure 29. Step 3: Creating a Process using exec() ...27
Figure 30. Step 5: Creating a Second Version ...28
Figure 31. Step 6: Creating a Remote Process ..28

xviii Figures

Figure 32. Step 7: Creating a Thread ...29
Figure 33. Step 8: Hitting a Breakpoint ...29
Figure 34. Step 9: Stepping the Lockstep Group ..30

Chapter 3: Getting Started with Remote Display Client
Figure 35. Remote Display Components ..36
Figure 36. Remote Display Client Setup ...37
Figure 37. Remote Display Client Package ..38
Figure 38. Remote Display Client Setup Apple Mac OS X ..38
Figure 39. Remote Display Client Window ..39
Figure 40. Asking for Password ...40
Figure 41. Access By Options ...41
Figure 42. Remote Display Window: Showing Batch Options ...42
Figure 43. Session Profiles ..43
Figure 44. Local Data in a Stack Frame ..44
Figure 45. Access By Options ...47
Figure 46. Remote Host Information Area ..48
Figure 47. Choosing a Batch Queuing System ..49
Figure 48. Remote Display Client: Showing Batch Options ..49
Figure 49. Saving a Profile ...50
Figure 50. Deleting a Profile ..50
Figure 51. Exit Dialog Box ...51

Chapter 4: Setting Up a Debugging Session
Figure 52. File > New Program Dialog Box ...56
Figure 53. Startup and Initialization Sequence ...59
Figure 54. File > Exit Dialog Box ..60
Figure 55. Start a New Process ...61
Figure 56. Attach to an Existing Process ..62
Figure 57. Open a Core File ...63
Figure 58. Attaching to an existing process ..64
Figure 59. Thread > Continuation Signal Dialog Box ...65
Figure 60. Open a Core File ...66
Figure 61. Setting Command-Line Options and Environment Variables67
Figure 62. Resetting Standard I/O ...68
Figure 63. Root Window Showing Process and Thread Status ...69
Figure 64. Process and Thread Labels in the Process Window ...69
Figure 65. File > Signals Dialog Box ...72
Figure 66. File > Search Path Dialog Box ...74
Figure 67. Select Directory Dialog Box ...75
Figure 68. File > Preferences Dialog Box: Options Page ..77
Figure 69. File > Preferences Dialog Box: Action Points Page ...77
Figure 70. File > Preferences Dialog Box: Launch Strings Page ...78
Figure 71. File > Preferences Dialog Box: Bulk Launch Page ...78
Figure 72. File > Preferences Dialog Box: Dynamic Libraries Page79
Figure 73. File > Preferences Dialog Box: Parallel Page ...79
Figure 74. File > Preferences Dialog Box: Fonts Page ..80
Figure 75. File > Preferences Dialog Box: Formatting Page ...80
Figure 76. File > Preferences Dialog Box: Pointer Dive Page ...81
Figure 77. File > Preferences Dialog Box: ReplayEngine ..81

TotalView Users Guider: version 8.8 xix

Figure 78. File > Preferences Dialog Box: ReplayEngine History Option82

Chapter 5: Setting Up Remote Debugging Sessions
Figure 79. File > Preferences: Launch Strings Page ...88
Figure 80. File > Preferences: Bulk Launch Page ...89
Figure 81. Manual Launching of Debugger Server ..92
Figure 82. Launching tvdsvr ..99
Figure 83. Multiple tvdsvr Processes ...99
Figure 84. Debugging Session Over a Serial Line ..100
Figure 85. Adding New Host ...101

Chapter 6: Setting Up MPI Debugging Sessions
Figure 86. File > New Program Dialog Box ...105
Figure 87. File > New Program Dialog Box: Parallel Tab ..105
Figure 88. File > New Program: Attach to an Existing Process ..108
Figure 89. Ranks Tab ...112
Figure 90. Tools > Message Queue Graph Window ...113
Figure 91. Tools > Message Queue Graph Options Window ...114
Figure 92. Tools > Message Queue Graph Options. Filter Tab ..114
Figure 93. Message Queue Window ..116
Figure 94. Message Queue Window Showing Pending Receive Operation117
Figure 95. Group > Attach Subset Dialog Box ...131
Figure 96. Stop Before Going Parallel Question Box ..132
Figure 97. File > Preferences: Parallel Page ..132

Chapter 7: Setting Up Parallel Debugging Sessions
Figure 98. Sample OpenMP Debugging Session ...140
Figure 99. OpenMP Shared Variable ...141
Figure 100. OpenMP THREADPRIVATE Common Block Variables ..142
Figure 101. OpenMP Stack Parent Token Line ...143
Figure 102. Cell Architecture ...144
Figure 103. A Cell Process ...145
Figure 104. Root Window for a Cell Program ..147
Figure 105. Action Point Properties Dialog Box ..148
Figure 106. Stop to Set Breakpoints Question ...148
Figure 107. Register Union ..149
Figure 108. Question Window for Global Arrays Program ..156
Figure 109. Tools > Global Arrays Window ..156
Figure 110. PVM Tasks and Configuration Window ...161
Figure 111. A Sliced UPC Array ...164
Figure 112. UPC Variable Window Showing Nodes ...164
Figure 113. A Pointer to a Shared Variable ...165
Figure 114. Pointer to a Shared Variable ..166

Chapter 8: Using TotalView Windows
Figure 115. Root Window ..171
Figure 116. Root Window Showing Two Host Computers ..171
Figure 117. Two Views of the Root Window ..172
Figure 118. Sorted and Aggregated Root Window ..173
Figure 119. A Process Window ..174

xx Figures

Figure 120. Line Numbers with Stop Icon and PC Arrow ..175
Figure 121. Address Only (Absolute Addresses) ...176
Figure 122. Assembly Only (Symbolic Addresses) ..177
Figure 123. Both Source and Assembler (Symbolic Addresses) ...177
Figure 124. Nested Dive ..178
Figure 125. Backward and Forward Buttons ...179
Figure 126. Resizing (and Its Consequences) ..180
Figure 127. File > Save Pane Dialog Box ..181

Chapter 9: Visualizing Programs and Data
Figure 128. Tools > Call Graph Dialog Box ..184
Figure 129. TotalView Visualizer Relationships ...186
Figure 130. A Three-Dimensional Array Sliced into Two Dimensions187
Figure 131. Sample Visualizer Windows ..188
Figure 132. Graph and Surface Visualizer Windows ..189
Figure 133. Visualizer Graph View Window ..191
Figure 134. Graph Options Dialog Box ...191
Figure 135. Sine wave Displayed in Three Ways ...192
Figure 136. A Surface View ..192
Figure 137. A Surface View of a Sine Wave ...193
Figure 138. Surface Options Dialog Box ...193
Figure 139. Four Surface Views ...194
Figure 140. File > Preferences Launch Strings Page ..198

Chapter 10: Using the CLI
Figure 141. The CLI, GUI and TotalView ..202
Figure 142. CLI xterm Window ..204

Chapter 11: Seeing the CLI at Work

Chapter 12: Debugging Programs
Figure 143. Edit > Find Dialog Box ...226
Figure 144. View > Lookup Variable Dialog Box ...227
Figure 145. Ambiguous Function Dialog Box ..227
Figure 146. View > Lookup Function Dialog Box ...227
Figure 147. Undive/Dive Controls ...228
Figure 148. Ambiguous Function Dialog Box ..228
Figure 149. View > Lookup Function Dialog Box ...229
Figure 150. The Toolbar ..230
Figure 151. The Processes Tab ..232
Figure 152. The Processes Tab: Showing Group Selection ...232
Figure 153. The Threads Tab ...233
Figure 154. Running To Barriers ..236
Figure 155. Control and Share Groups Example ..238
Figure 156. Action Point and Addresses Dialog Boxes ...240
Figure 157. Ambiguous Address Dialog Box ...240
Figure 158. Stepping Illustrated ..241
Figure 159. Thread > Continuation Signal Dialog Box ...244
Figure 160. Create Checkpoint and Restart Checkpoint Dialog Boxes246
Figure 161. Tools > Debugger Loaded Libraries Dialog Box ..247

TotalView Users Guider: version 8.8 xxi

Figure 162. Stopping to Set a Breakpoint Question Box ..248
Figure 163. File > Preferences: Dynamic Libraries Page ..249
Figure 164. Load All Symbols in Stack Context menu ..250

Chapter 13: Using Groups, Processes, and Threads
Figure 165. The P/T Set Control in the Process Window ...258
Figure 166. Width Specifiers ..263
Figure 167. Group > Custom Groups Dialog Box ..279

Chapter 14: Examining and Changing Data
Figure 168. An Untransformed Map ..282
Figure 169. A Transformed Map ..282
Figure 170. List and Vector Transformations ..283
Figure 171. File > Preferences Formatting Page ...284
Figure 172. A Tooltip ...285
Figure 173. Variable Window for a Global Variable ...286
Figure 174. Variable Window: Using More and Less ...288
Figure 175. Variable Window With “Change” Highlighting ..288
Figure 176. Variable Window Showing Last Value Column ...289
Figure 177. Displaying Scoped Variables ..290
Figure 178. Variable Window Showing Frozen State ...292
Figure 179. Locked and Unlocked Variable Windows ...292
Figure 180. Program Browser and Variable Windows (Part 1) ...293
Figure 181. Program Browser and Variable Window (Part 2) ...294
Figure 182. Diving on Local Variables and Registers ..295
Figure 183. File > Preferences Pointer Dive Page ...296
Figure 184. View > Examine Format > Stuctured Display ...297
Figure 185. View > Examine Format > Raw Display ..297
Figure 186. Variable Window for an Area of Memory ..298
Figure 187. Variable Window with Machine Instructions ..299
Figure 188. Undive/Redive Buttons ...301
Figure 189. Nested Dives ..301
Figure 190. Displaying a Fortran Structure ...302
Figure 191. Displaying C Structures and Arrays ..303
Figure 192. Dive in All ...304
Figure 193. The Tools > Expression List Window ..305
Figure 194. A Context Menu ...306
Figure 195. Expression List Window Context Menu ...306
Figure 196. Expression List Window With “Change” Highlighting ...307
Figure 197. Variable Window Showing Last Value Column ...307
Figure 198. The Tools > Expression List Window ..308
Figure 199. Using Methods in the Tools > Expression List Window308
Figure 200. Using Functions in the Tools > Expression List Window309
Figure 201. The Tools > Expression List Window Showing Column Selector310
Figure 202. Using an Expression to Change a Value ...313
Figure 203. Three Casts ...315
Figure 204. Displaying a Union ...318
Figure 205. Displaying wchar_t Data ...321
Figure 206. Editing the argv Argument ...324
Figure 207. Displaying C++ Classes That Use Inheritance ..325

xxii Figures

Figure 208. Diving on a Common Block List in the Stack Frame Pane327
Figure 209. Fortran Modules Window ...328
Figure 210. Fortran 90 User-Defined Type ..329
Figure 211. Fortran 90 Pointer Value ..330
Figure 212. Thread Objects Page on an IBM AIX Computer ...332
Figure 213. Variable Window: Showing Variable Properties ..333

Chapter 15: Examining Arrays
Figure 214. Stride Displaying the Four Corners of an Array ...337
Figure 215. Fortran Array with Inverse Order and Limited Extent ..338
Figure 216. An Array Slice and an Array Section ..339
Figure 217. Array Data Filtering by Comparison ...341
Figure 218. Array Data Filtering for IEEE Values ...342
Figure 219. Array Data Filtering by Range of Values ...343
Figure 220. Sorted Variable Window ...345
Figure 221. Array Statistics Window ..345
Figure 222. Viewing Across Threads ..348
Figure 223. Viewing across an Array of Structures ..348

Chapter 16: Setting Action Points
Figure 224. Action Point Symbols ...352
Figure 225. Action Point Tab ...353
Figure 226. Setting Breakpoints on Multiple Similar Addresses ...354
Figure 227. Setting Breakpoints on Multiple Similar Addresses and on Processes355
Figure 228. Action Point > At Location Dialog Box ...355
Figure 229. Pending Breakpoints ..356
Figure 230. Ambiguous Function Dialog Box ..357
Figure 231. Action Point > Properties Dialog Box ...357
Figure 232. Action Point > At Location Dialog Box ...359
Figure 233. Action Point > Properties: Selecting ...360
Figure 234. Breakpoint at Assembler Instruction ...360
Figure 235. PC Arrow Over a Stop Icon ..361
Figure 236. Action Point > Properties Dialog Box ...361
Figure 237. File > Preferences: Action Points Page ...362
Figure 238. Action Point > Properties Dialog Box ...366
Figure 239. Stopped Execution of Compiled Expressions ...373
Figure 240. Tools > Watchpoint Dialog Boxes ...378

Chapter 17: Evaluating Expressions
Figure 241. Expression List Window: Accessing Array Elements ..384
Figure 242. Displaying the Value of the Last Statement ...386
Figure 243. Expression List Window: Showing Overloads ..387
Figure 244. Class Casting ..388
Figure 245. Tools > Evaluate Dialog Box ...392
Figure 246. Waiting to Complete Message Box ...392
Figure 247. Evaluating Information in Multiple Processes ..393
Figure 248. Using Assembler Expressions ..393

TotalView Users Guide: version 8.8 xxiii

About This Book

This book describes how to use the TotalView® debugger, a source-
and machine-level debugger for multi-process, multi-threaded pro-
grams. The information in this book assumes that you are familiar
with programming languages, a UNIX or Linux operating system, and
the processor architecture of the system on which you are running
TotalView and your program.

This user guide combines information for all TotalView debuggers,
whether they run within a Graphic User Interface (GUI) or in an
xterm-like window where you must type commands. That version of
TotalView is called the Command Line Interface (CLI). This book
emphasizes the GUI interface, as it is easier to use. After you see
what you can do using the GUI, you will know what you can do using
the CLI.

TotalView doesn’t change much from platform to platform. Differ-
ences between platforms are mentioned.

TotalView Family Differences

This manual describes TotalView Enterprise, TotalView Team, and TotalView
Individual. Each of these allows you to use the CLI debugger as well. In all
cases, TotalView Enterprise and TotalView Team have the same features.
They differ in they way they are licensed. However, TotalView Individual is
slightly different.

The most fundamental differences between TotalView Team and TotalView Enterprise are
the way resources are shared and used. When you purchase TotalView Team, you are
purchasing “tokens.” These tokens represent debugging capabilities. For example, if you

TotalView Family Differences

xxiv About this Book

have 64 tokens available, 64 programmers could be active, each debugging a one-pro-
cess job; or 2 programmers, each debugging a 32 process job. In contrast, a
TotalView Enterprise license is based on the number of users and the number of licensed
processors. You’ll find more precise information on our web site.

The major differences are:

TotalView
Team & Enterprise

TotalView
Individual Comment

Execute on any licensed
computer of the same
architecture

Node locked. You can execute TotalView
Individual only on the
computer you install it on.

Number of users is
determined by license

Only one user The TotalView Enterprise
license limits the number of
users. TotalView Team does
not.

Number of processes
limited by license. No limit
on threads

No more than 16
processes and threads.

Your license determines
the number of processors
upon which your program
can run.

A program can execute on
no more than two cores
or four cores, depending
upon license.

TotalView Enterprise licenses
the full capabilities of all
machines upon which it runs
even if you are not using all of
your machine’s processors.
TotalView Team creates a pool
of tokens that you can use. See
our web site for more
information.

Processes can execute on
any computer in the same
network.

Remote processes are not
allowed.

Processes must execute on the
installed computer.

Remote X Server
connections allowed.

No remote X Server
connections are allowed.

Programmers cannot remotely
log into a computer and then
execute TotalView Individual.

Memory debugging is
bundled. It is only bundled
with Team Plus.

No memory debugging

How to Use This Book

TotalView Users Guide: version 8.8 xxv

How to Use This Book

The information in this book is presented in five parts:

I: Introduction
This part contains an overview of some TotalView features and an intro-
duction to the TotalView process/thread model. These sections give you
a feel for what TotalView can do.
II: Setting Up
This part describes how to configure TotalView. No one will ever use all of
the information in this part.
Chapter 3 contains general information. Chapters 4 through 6 tell you
how to get your programs running under TotalView control. Chapter 4
explains how to get the TotalView Debugger Server (tvdsvr) running and
how to reconfigure how TotalView launches the tvdsvr. In most cases,
TotalView default works fine and you won’t need this information.
Chapters 5 and 6 look at high performance computing environments such
as MPICH, OpenMP, UPC, and the like. Most people never use more than
one or two sections from these two chapters. You should go to the table
of contents and find what you need instead of just browsing through this
information.
III: Using the GUI
The chapters in this section describe some of the TotalView windows and
how you use them. They also describe tools such as the Visualizer and the
Call Graph that help you analyze what your program is doing.
IV: Using the CLI
The chapters in this section explain the basics of using the Command
Line Interface (CLI) for debugging. CLI commands are not discussed in
this book. You’ll find that information in the “TotalView Reference Guide”.
V: Debugging
In many ways, most of what precedes this part of the book is introductory
material. So, if TotalView just comes up (and it should) and you under-
stand what debuggers do, you can go directly to this information. This
part explains how to examine your program and its data. It also contains
information on setting the action points that allow you to stop and mon-
itor your program’s execution.
Chapter 12 is a detailed examination of the TotalView group, process, and
thread model. Having a better understanding of this model makes it eas-
ier to debug multi-process and multi-threaded programs.

Using the CLI

xxvi About this Book

Using the CLI

To use the Command Line Interface (CLI), you need to be familiar with and
have experience debugging programs with the TotalView GUI. CLI com-
mands are embedded within a Tcl interpreter, so you get better results if
you are also familiar with Tcl. If you don’t know Tcl, you can still use the
CLI, but you lose the ability to program actions that Tcl provides; for exam-
ple, CLI commands operate on a set of processes and threads. By using Tcl
commands, you can save this set and apply this saved set to other com-
mands.

The following books are excellent sources of Tcl information:

Ousterhout, John K. Tcl and the Tk Toolkit. Reading, Mass.: Addison Wesley,
1997.
Welch, Brent B. Practical Programming in Tcl & Tk. Upper Saddle River, N.J.:
Prentice Hall PTR, 1999.

There is also a rich set of resources available on the Web. A very good start-
ing point is http://www.tcltk.tk.

The fastest way to gain an appreciation of the actions performed by CLI
commands is to scan Chapter 1 of the TotalView Reference Guide, which con-
tains an overview of CLI commands.

Audience

Many of you are very sophisticated programmers having a tremendous
knowledge of programming and its methodologies, and almost all of you
have used other debuggers and have developed your own techniques for
debugging the programs that you write.

We know you are an expert in your area, whether it be threading, high-per-
formance computing, or client/server interactions, and the like. So, rather
than telling you about what you’re doing, this book tells you about
TotalView.

TotalView is a rather easy-to-use product. Nonetheless, we can’t tell you
how to use TotalView to solve your problems because your programs are
unique and complex, and we can’t anticipate what you want to do. So,
what you’ll find in this book is a discussion of the kinds of operations you
can perform. This book, however, is not just a description of dialog boxes

Conventions

TotalView Users Guide: version 8.8 xxvii

and what you should click on or type. Instead, it tells you how to control
your program, see a variable’s value, and perform other debugging actions.

Information about what you do with a dialog box or the kinds of data you
can type is in the online Help. If you prefer, HTML and PDF versions of this
information is available on our Web site. If you have purchased TotalView,
you can also post this HTML documentation on your intranet.

Conventions

The following table describes the conventions used in this book:

Convention Meaning

[] Brackets are used when describing parts of a command that are
optional.

arguments In a command description, text in italics represents information
you type. Elsewhere, italics is used for emphasis.

Dark text In a command description, dark text represents keywords or
options that you must type exactly as displayed. Elsewhere, it
represents words that are used in a programmatic way rather
than their normal way.

Example text In program listings, this indicates that you are seeing a program
or something you’d type in response to a shell or CLI prompt. If
this text is in bold, it’s indicating that what you’re seeing is what
you’ll be typing. If you’re viewing this information online,
example text is in color.
This graphic symbol indicates that the information that
follows—which is printed in italics—is a note. This information
is an important qualifier to what you just read.
The primary emphasis of this book is the GUI. It shows the
windows and dialog boxes that you use. This symbol tells you
the CLI command you use to do the same thing.

CLI:

TotalView Documentation

xxviii About this Book

TotalView Documentation

The following table describes TotalView documentation:

Title Contents
Online
Help HTML PDF

Evaluating TotalView Brochure that leads you to basic TotalView features.
Contact sales@totalviewtech.com for a free copy.

TotalView Users Guide Describes how to use the TotalView GUI and the CLI;
this is the most used of all the TotalView books.

TotalView New Features Describes new features added to TotalView.

Debugging Memory Using
TotalView

Is a combined user and reference guide describing
how to find your program’s memory problems.

TotalView Reference Guide Contains descriptions of CLI commands, how you
run TotalView, and platform-specific information.

TotalView QuickView Presents what you need to know to get started using
TotalView.. Contact sales@totalviewtech.com for a
free copy.

CLI Command Summary A reference card that contains a brief description of
all CLI commands and their syntax. Contact
sales@totalviewtech.com for a free copy.

TotalView Commands Defines all TotalView GUI commands—this is the
online Help.

TotalView Installation Guide Contains the procedures to install TotalView and the
FLEXlm license manager.

Platforms and System
Requirements

Lists the platforms upon which TotalView runs and
the compilers it supports.

Creating Type
Transformations

Describes in detail how you can create type
transformations. This document is extremely
technical.

TotalView Eclipse Plugin Tells how you install and use the TotalView Eclipse
plugin.

Contacting Us

TotalView Users Guide: version 8.8 xxix

Contacting Us

Please contact us if you have problems installing TotalView, questions that
are not answered in the product documentation or on our Web site, or sug-
gestions for new features or improvements.

Our Internet email address for support issues is:

support@totalviewtech.com

For documentation issues, the address is:

documentation@totalviewtech.com

Our phone numbers are:

1-800-856-3766 in the United States
(+1) 508-652-7700 worldwide

If you are reporting a problem, please include the following information:

The version of TotalView and the platform on which you are running
TotalView.
An example that illustrates the problem.
A record of the sequence of events that led to the problem.

Contacting Us

xxx About this Book

TotalView Users Guide: version 8.8 1

Part I: Introduction

This part of the TotalView Users Guide contains two chapters.

Chapter 1: Getting Started with TotalView
Presents an overview of what TotalView is and the ways in
which it can help you debug programs. If you haven’t used
TotalView before, reading this chapter lets you know what
TotalView can do for you.

Chapter 2: About Threads, Processes, and Groups
Defines the TotalView model for organizing processes and
threads. While most programmers have an intuitive under-
standing of what their programs are doing, debugging multi-
process and multi-threaded programs requires an exact
knowledge of what’s being done. This chapter begins a two-
part look at the TotalView process/thread model. This chap-
ter contains introductory information. Chapter 13: “Using
Groups, Processes, and Threads” on page 253 contains informa-
tion on actually using these concepts.

2

TotalView Users Guide: version 8.8 3

c
h
a
p
t
e
r

Getting Started with
TotalView

1

TotalView is a powerful, sophisticated, and programmable tool that
lets you debug, analyze, and tune the performance of complex
serial, multi-process, and multi-threaded programs.

If you want to jump in and get started quickly, go to our web site at
http://www.totalviewtech.com/Documentation and select the “Getting
Started” item.

This chapter contains the following sections:

“Getting Started” on page 3
“Debugging Multi-process and Multi-threaded Programs” on page 10
“Using Groups and Barriers” on page 12
“Memory Debugging” on page 13
“Introducing the CLI” on page 14
“What’s Next” on page 14

Getting Started

The first steps you perform when debugging programs with TotalView are
similar to those you perform using other debuggers:

You use the –g option when you compile your program.
You start your program under TotalView control.
You set a breakpoint.
You examine data.

The way you do these things is similar to the way you do things in other
debuggers. Where TotalView differs from what you’re used to is in its raw
power, the breadth of commands available, and its native ability to handle
multi-process, multi-threaded programs.

Getting Started

4 Chapter 1: Getting Started with TotalView

Starting TotalView

After execution begins—by typing something like totalview programname—
the TotalView Root and Process Windows appear. The window you’ll spend
the most time using is the Process Window.

You can start program execution in several ways. Perhaps the easiest way is
to click the Step button in the toolbar. This gets your program started,
which means that the initialization performed by the program gets done
but no statements are executed.

A second way is to scroll your program to find where you want it to run to,
select the line, then click on the Run To button in the toolbar. Or you can
click on the line number, which tells TotalView to create a breakpoint on
that line, and then click the Go button in the toolbar.

If your program is large, and usually it will be, you can use Edit > Find to
locate the line for you. Or, if you want to stop execution when your pro-

Figure 1: The Process Window

Getting Started

TotalView Users Guide: version 8.8 5

gram reaches a subroutine, use Action Point > At Location to set a break-
point on that routine before you click Go.

What About Print Statements?

Most programmers learn to debug by using print statements. That is, you
insert lots of printf() or PRINT statements in your code and then inspect
what gets written. The problem with this is that every time you want to add
a new statement, you need to recompile your program. Even worse, what
gets printed is probably not in the right order when running multi-process,
multi-threaded programs.

While TotalView is much more sophisticated in displaying information, you
can still use printf() statements if that’s your style, but you’ll use them in a
more sophisticated way, and use them without recompiling your program.
You’ll do this by adding a breakpoint that prints information. When you
open the Action Point Properties, which is shown in the next figure, you can
add any code you want to a breakpoint.

In TotalView, a breakpoint is called an “action point” because TotalView breakpoints are
much more powerful than the breakpoints you’ve used in other debuggers.

Because there’s code associated with this breakpoint, it is called an eval
point. Here’s where TotalView does things a little differently. When your pro-
gram reaches this eval point, TotalView executes the code you’ve entered. In
this case, TotalView prints the value of i.

Eval points do exactly what you tell them to do. In the example in the pre-
ceding figure, TotalView lets your program continue to execute because you
didn’t tell it to stop. In other words, you don’t have to stop program execu-
tion just to see information. You can, of course, tell TotalView to stop.

Figure 2: Action Point
Properties Dialog Box

Getting Started

6 Chapter 1: Getting Started with TotalView

Figure 3 shows two eval points that stop execution. (One of them does
something else as well.)

The eval point in the foreground uses programming language statements
and a built-in debugger function to stop a loop every 100 iterations. It also
prints the value of i. In contrast, the eval point in the background just stops
the program every 100 times a statement gets executed.

Eval points let you patch your programs and route around code that you
want replaced. For example, suppose you need to change a bunch of state-
ments. Just add these statements to an action point, then add a goto
statement that jumps over the code you no longer want executed. For
example, the eval point shown in the following figure tells TotalView to exe-
cute three statements and then skip to line 656. (See Figure 4 on page 7.)

Examining Data

Programmers use print statements as an easy way to examine data. They
usually do this because their debugger doesn’t have sophisticated ways of
showing information. In contrast, Chapter 14, “Examining and
Changing Data,” on page 281 and Chapter 15, “Examining Arrays,” on
page 335 explain how TotalView displays data values. In addition, Chapter
9, “Visualizing Programs and Data,” on page 183 describes how TotalView visu-
alizes your data graphically.

Because data is difficult to see, the Stack Frame Pane (the pane in the
upper right corner of the Process Window) (see Figure 1 on page 4) has a

Figure 3: Setting Conditions

Getting Started

TotalView Users Guide: version 8.8 7

list of all variables that exist in your current routine. If the value is simple,
you’ll see its value in this pane.

If the value isn’t simple, just dive on the variable to get more information.

Diving is something you can do almost everywhere in TotalView. What happens
depends on where you are. In general, it either brings you to a different place in your
program or shows you more information about what you’re diving on. To dive on some-
thing, position the cursor over the item and click your middle mouse button or double-
click using your left mouse button.

Diving on a variable tells TotalView to display a window that contains infor-
mation about the variable. (As you read this manual, you’ll come across
many other types of diving.)

Some of the values in the Stack Frame Pane are in bold type. This lets you
know that you can click on the value and then edit it.

(Figure 5 on page 8 shows two Variable Windows. One window was created
by diving on a structure and the second by diving on an array.

Because the data displayed in a Variable Window might not be simple, you
can redive on this data. When you dive in a Variable Window, TotalView
replaces the window’s contents with the new information. If you don’t want
to replace the contents, you can use the View > Dive Thread in New
Window command to display this information in a separate window.

If the data being displayed is a pointer, diving on the variable dereferences
the pointer and then displays the data that is being pointed to. In this way,
you can follow linked lists.

The upper right corner of a Variable Window has arrow buttons ().
Selecting these buttons lets you undive and redive. For example, if you’re
following a pointer chain, click the center-left-pointing arrow to go back to
where you just were. Click the center-right-pointing arrow to go forward to

Figure 4: Patching Using an
Eval Point

Getting Started

8 Chapter 1: Getting Started with TotalView

the place you previously dove on. The outermost two arrows do “undive
all” and “redive all” operations.

Examining Arrays

Because arrays almost always have copious amounts of data, TotalView has
a variety of ways to simplify how it should display this data.

The Variable Window in the upper left corner of the figure on the next page
shows a basic slice operation. Slicing tells TotalView to display array elements
whose positions are named within the slice. In this case, TotalView is display-
ing elements 6 through 10 in each of the array’s two dimensions. The other
Variable Window in this figure combines a filter with a slice. A filter tells
TotalView to display data if it meets some criteria that you specify. Here, the
filter says “of the array elements that could be displayed, only display ele-
ments whose value is greater than 300.” (See Figure 6 on page 9.)

While slicing and filtering let you reduce the amount of data that TotalView
displays, you might want to see the shape of the data. If you select the
Tools > Visualize command, TotalView shows a graphic representation of
the information in the Variable Window. (See Figure 7 on page 9.)

Seeing Groups of Variables

Variable Windows let you critically examine many aspects of your data. In
many cases, you’re not interested in much of this information. Instead, all
you’re interested in is the variable’s value. This is what the Expression List

Figure 5: Diving on a
Structure and an Array

Getting Started

TotalView Users Guide: version 8.8 9

Window is for. It also differs from the Variable Window in that it lets you see
the values of many variables at the same time. (See Figure 8 on page 10.)

You can add variables to this window in several ways, such as:

Type the variable’s name in the Expression column.
Select the variable in the Source or Stack Frame Panes or in a Variable Win-
dow, right-click, then select Add to Expression List from the context menu.

Figure 6: Slicing and Filtering
Arrays

Figure 7: Visualizing an Array

Debugging Multi-process and Multi-threaded Programs

10 Chapter 1: Getting Started with TotalView

For more information, see “Viewing a List of Variables” on page 305.

Setting Watchpoints

Using watchpoints is yet another way to look at data. A TotalView watch-
point stops execution when a variable’s data changes, no matter what
instruction changed the data. That is, if you change data from 30 different
statements, the watchpoint stops execution right after any of these 30
statements make a change. Another example is if something is trashing a
memory location, you can put a watchpoint on that location and then wait
until TotalView stops execution because the watchpoint was executed.

To create a watchpoint for a variable, select Tools > Create Watchpoint
from the variable’s Variable Window or by selecting Action Points > Create
Watchpoint in the Process Window.

Debugging Multi-process and Multi-
threaded Programs

When your program creates processes and threads, TotalView can automat-
ically bring them under its control. If the processes are already running,
TotalView can acquire them as well. You don’t need to have multiple debug-
gers running: one TotalView is all you need.

The processes that your program creates can be local or remote. Both are
presented to you in the same way. You can display them in the current Pro-
cess Window or display them in an additional window.

The Root Window, which automatically appears after you start TotalView,
contains an overview of all processes and threads being debugged. Diving
on a process or a thread listed in the Root Window takes you quickly to the
information you want to see. (See Figure 9 on page 11.)

Figure 8: Tools > Expression
List Window

Debugging Multi-process and Multi-threaded Programs

TotalView Users Guide: version 8.8 11

If you need to debug processes that are already running, select the File > New
Program command, then select Attach to an existing process on the left side
of the dialog box. After selecting an entry and pressing the OK button, you can
debug these processes in the same way as any other process or thread.

In the Process Window, you can switch between processes by clicking on a
box within the Processes tab. Every time you click on one, TotalView
switches contexts. Similarly, clicking on a thread, changes the context to that
thread.

Program Using Almost Any Execution Model

In many cases, you’ll be using one of the popular parallel execution mod-
els. TotalView supports MPI and MPICH, OpenMP, ORNL PVM (and HP
Alpha DPVM), SGI shared memory (shmem), Global Arrays, and UPC. You
could be using threading in your programs. Or, you can compile your pro-
grams using compilers provided by your hardware vendor or other vendors
such as those from Intel and the Free Software Foundation (the GNU com-
pilers).

Supporting Multi-process and Multi-threaded Programs

When debugging multi-process, multi-threaded programs, you often want to
see the value of a variable in each process or thread simultaneously. Do this
by telling TotalView to show the variable either across processes or threads.
Figure 10 on page 12 shows how TotalView displays this information for a
multi-threaded program.

If you’re debugging an MPI program, the Tools > Message Queue Graph Win-
dow graphically displays the program’s message queues. (See Figure 11 on
page 12.)

Clicking on the boxed numbers tells TotalView to place the associated pro-
cess into a Process Window. Clicking on a number next to the arrow tells
TotalView to display more information about that message queue.

This book contains many additional examples.

Figure 9: The Root Window

Using Groups and Barriers

12 Chapter 1: Getting Started with TotalView

Using Groups and Barriers

When running a multi-process and multi-threaded program, TotalView tries
to automatically place your executing processes into different groups.
While you can always individually stop, start, step, and examine any thread
or process, TotalView lets you perform these actions on groups of threads
and processes. In most cases, you do the same kinds of operations on the

Figure 10: Viewing Across
Processes

Figure 11: A Message Queue
Graph

Memory Debugging

TotalView Users Guide: version 8.8 13

same kinds of things. The toolbar’s pulldown menu lets you select the tar-
get of your action. Figure 12 shows this toolbar.

For example, if you are debugging an MPI program, you might select
Process (Workers) from the Toolbar. (Chapter 13, “Using Groups, Processes,
and Threads”, describes the reasons for setting the pulldown this way.) The
Processes/Ranks tab at the bottom of the window shows you which pro-
cesses are within this group. (See Figure 13.)

This figure shows the Processes Tab after a group containing 10 processes
was selected in the Toolbar’s Group pulldown list. You can now see what
processes are acted upon when you select a command such as Go or Step.

Memory Debugging

Trying to find memory problems with TotalView is a lot different from what
you’ve grown accustomed to. The main difference is that is a lot easier
because MemoryScape is an integrated part of TotalView. (MemoryScape
can also be run as a separate stand-alone program.) MemoryScape is
described in its own book.

Figure 12: Toolbar With
Pulldown

Figure 13: Process Tab

Introducing the CLI

14 Chapter 1: Getting Started with TotalView

Introducing the CLI

The Command Line Interpreter, or CLI, contains an extensive set of com-
mands that you can type into a command window. These commands are
embedded in a version of the Tcl command interpreter. When you open a
CLI window, you can enter any Tcl statements that you could enter in any
version of Tcl. You can also enter commands that TotalView Technologies
has added to Tcl that allow you to debug your program. Because these
debugging commands are native to this Tcl, you can also use Tcl to manip-
ulate the program being debugged. This means that you can use the CLI to
create your own commands or perform any kind of repetitive operation.
For example, the following code shows how to set a breakpoint at line 1038
using the CLI:

dbreak 1038

When you combine Tcl and TotalView, you can simplify what you are doing.
For example, the following code shows how to set a group of breakpoints:

foreach i {1038 1043 1045} {
dbreak $i

}

Chapter 11, “Seeing the CLI at Work,” on page 215 presents more realistic
examples.

Information about the CLI is scattered throughout this book. Chapter 3 of
the TotalView Reference Guide contains descriptions of most CLI commands.

What’s Next

This chapter has presented just a few TotalView highlights. The rest of this
book tells you more about TotalView.

All TotalView documentation is available on our Web site at
http://www.totalviewtech.com/Documentation in PDF and HTML formats.
You can also find this information in the online Help.

TotalView Users Guide: version 8.8 15

c
h
a
p
t
e
r

About Threads,
Processes, and Groups

2

While the specifics of how multi-process, multi-threaded programs
execute differ greatly from one hardware platform to another, from
one operating system to another, and from one compiler to another,
all share some general characteristics. This chapter defines a general
model for conceptualizing the way processes and threads execute.

This chapter presents the concepts of threads, processes, and groups.
Chapter 13, “Using Groups, Processes, and Threads,” on page 253 is a
more exacting and comprehensive look at these topics.

This chapter contains the following sections:

“A Couple of Processes” on page 15
“Threads” on page 18
“Complicated Programming Models” on page 19
“Types of Threads” on page 20
“Organizing Chaos” on page 22
“Creating Groups” on page 26
“Simplifying What You’re Debugging” on page 30

A Couple of Processes

When programmers write single-threaded, single-process programs, they
can almost always answer the question “Do you know where your program
is?” These types of programs are rather simple, looking something like
what’s shown in the figure on the next page.

If you use any debugger on these types of programs, you can almost always
figure out what’s going on. Before the program begins executing, you set a
breakpoint, let the program run until it hits the breakpoint, and then

A Couple of Processes

16 Chapter 2: About Threads, Processes, and Groups

inspect variables to see their values. If you suspect that there’s a logic
problem, you can step the program through its statements, seeing what
happens and where things are going wrong.

What is actually occurring, however, is a lot more complicated, since a
number of programs are always executing on your computer. For example,
your computing environment could have daemons and other support pro-
grams executing, and your program can interact with them.

These additional processes can simplify your program because it no longer
has to do everything itself. It can hand off some tasks and not have to
focus on how that work gets done.

The preceding figure shows an architecture where the application program
just sends requests to a daemon. This architecture is very simple. The type
of architecture shown in the next figure is more typical. In this example, an
email program communicates with a daemon on one computer. After
receiving a request, this daemon sends data to an email daemon on
another computer, which then delivers the data to another mail program.

This architecture has one program handing off work to another. After the
handoff, the programs do not interact. The program handing off the work
just assumes that the work gets done. Some programs can work well like
this. Most don’t. Most computational jobs do better with a model that

Figure 14: A Uniprocessor A Computer

A Process

Figure 15: A Program and
Daemons A Daemon or

Support Program

A User Program

Figure 16: Mail Using
Daemons to Communicate

A Couple of Processes

TotalView Users Guide: version 8.8 17

allows a program to divide its work into smaller jobs, and parcel this work
to other computers. Said in a different way, this model has other machines
do some of the first program’s work. To gain any advantage, however, the
work a program parcels out must be work that it doesn’t need right away. In
this model, the two computers act more or less independently. And,
because the first computer doesn’t have to do all the work, the program
can complete its work faster.

Using more than one computer doesn’t mean that less computer time is
being used. Overhead due to sending data across the network and over-
head for coordinating multi-processing always means more work is being
done. It does mean, however, that your program finishes sooner than if
only one computer were working on the problem.

One problem with this model is how a programmer debugs what’s happen-
ing on the second computer. One solution is to have a debugger running
on each computer. The TotalView solution to this debugging problem
places a server on each remote processor as it is launched. These servers
then communicate with the main TotalView process. This debugging archi-
tecture gives you one central location from which you can manage and
examine all aspects of your program.

You can also have TotalView attach to programs that are already running on other com-
puters. In other words, programs don’t have to be started from within TotalView to be
debugged by TotalView.

In all cases, it is far easier to write your program so that it only uses one
computer at first. After you have it working, you can split up its work so that
it uses other computers. It is likely that any problems you find will occur in
the code that splits up the program or in the way the programs manipulate
shared data, or in some other area related to the use of more than one
thread or process. This assumes, of course, that it is practical to write your
program as a single-process program. For some algorithms, executing a pro-
gram on one computer means that it will take weeks to execute.

Figure 17: Two Computers
Working on One Problem

Sends Work

Receives Result

Uses Results

Threads

18 Chapter 2: About Threads, Processes, and Groups

Threads

The operating system owns the daemon programs discussed in the previ-
ous section. These daemons perform a variety of activities, from managing
computer resources to providing standard services such as printing.

If operating systems can have many independently executing components,
why can’t a program? Obviously, a program can and there are various ways
to do this. One programming model splits the work off into somewhat
independent tasks within the same process. This is the threads model.

This figure also shows the daemon processes that are executing. (The fig-
ures in the rest of this chapter won’t show these daemons.)

In this computing model, a program (the main thread) creates threads. If
they need to, these newly created threads can also create threads. Each
thread executes relatively independently from other threads. You can, of
course, program them to share data and to synchronize how they execute.

The debugging issue here is similar to the problem of processes running on
different machines. In both, a debugger must intervene with more than one
executing entity. It has to understand multiple address spaces and multiple
contexts.

There’s not a lot of difference between a multi-threaded or a multi-process program when
you are using TotalView. The way in which TotalView displays process information is
very similar to how it displays thread information.

Figure 18: Threads

A thread

A daemon

Complicated Programming Models

TotalView Users Guide: version 8.8 19

Complicated Programming Models

While most computers have one or two processors, high-performance com-
puting often uses computers with many more. And as hardware prices
decrease, this model is starting to become more widespread. Having more
than one processor means that the threads model shown in the figure in the
previous section changes to look something like what is shown in Figure 19.
(Only four cores are shown even though many more could on a chip.)l

This figure shows four cores in one computer, each of which has three threads.
This architecture is an extension to the model that links more than one com-
puter together. Its advantage is that the processor doesn’t need to communi-
cate with other processors over a network as it is completely self-contained.

The next step is to join many multi-processor computers together. (See
Figure 20 on page 20.) shows five computers, each with four processors,
with each processsor running three threads. If this figure shows the execu-
tion of one program, then the program is using 60 threads.

This figure depicts only processors and threads. It doesn’t have any infor-
mation about the nature of the programs and threads or even whether the
programs are copies of one another or represent different executables.

At any time, it is next to impossible to guess which threads are executing
and what a thread is actually doing. To make matters worse, many multi-
processor programs begin by invoking a process such as mpirun or IBM
poe, whose function is to distribute and control the work being performed.
In this kind of environment, a program is using another program to control
the workflow across processors.

Figure 19: Four-Processor
Computer

Types of Threads

20 Chapter 2: About Threads, Processes, and Groups

When there are problems working this way, traditional debuggers and solu-
tions don’t work. TotalView, on the other hand, organizes this mass of execut-
ing procedures for you and lets you distinguish between threads and pro-
cesses that the operating system uses from those that your program uses.

Types of Threads

All threads aren’t the same. The following figure shows a program with
three threads. (See Figure 21.)

Assume that all of these threads are user threads; that is, they are threads
that perform some activity that you’ve programmed.

Figure 20: Four Processors on
a Network

Figure 21: Threads (again)

A thread

Types of Threads

TotalView Users Guide: version 8.8 21

Many computer architectures have something called user mode, user space, or some-
thing similar. User threads means something else. The TotalView definition of a user
thread is simply a unit of execution created by a program.

Because the program creates user threads to do its work, they are also
called worker threads.

Other threads can also be executing. For example, there are always threads
that are part of the operating environment. These threads are called man-
ager threads. Manager threads exist to help your program get its work done.
In the following figure, the horizontal threads at the bottom are user-cre-
ated manager threads.

All threads are not created equal and all threads do not execute equally.
Many programs also create manager-like threads. Since these user-created
manager threads perform services for other threads, they are called service
threads. (See Figure 23 on page 22.)

These service threads are also worker threads. For example, the sole func-
tion of a user service thread might be to send data to a printer in response
to a request from the other two threads.

One reason you need to know which of your threads are service threads is
that a service thread performs different types of activities than your other
threads. Because their activities are different, they are usually developed
separately and, in many cases, are not involved with the fundamental prob-
lems being solved by the program. Here are two examples:

The code that sends messages between processes is far different than
the code that performs fast Fourier transforms. Its bugs are quite differ-
ent than the bugs that create the data that is being transformed.
A service thread that queues and dispatches messages sent from other
threads might have bugs, but the bugs are different than the rest of your
code and you can handle them separately from the bugs that occur in
nonservice user threads.

Figure 22: User and Service
Threads

User Thread

Manager Thread

Organizing Chaos

22 Chapter 2: About Threads, Processes, and Groups

Being able to distinguish between the two kinds of threads means that you
can focus on the threads and processes that actively participate in an
activity, rather than on threads performing subordinate tasks.

Although this last figure shows five threads, most of your debugging effort
will focus on just two threads.

Organizing Chaos

It is possible to debug programs that are running thousands of processes
and threads across hundreds of computers by individually looking at each.
However, this is almost always impractical. The only workable approach is
to organize your processes and threads into groups and then debug your
program by using these groups. In other words, in a multi-process, multi-
threaded program, you are most often not programming each process or
thread individually. Instead, most high-performance computing programs
perform the same or similar activities on different sets of data.

TotalView cannot know your program’s architecture; however, it can make
some intelligent guesses based on what your program is executing and where
the program counter is. Using this information, TotalView automatically orga-
nizes your processes and threads into the following predefined groups:

Control Group: All the processes that a program creates. These pro-
cesses can be local or remote. If your program uses processes that it did
not create, TotalView places them in separate control groups. For exam-
ple, a client/server program that has two distinct executables that run in-
dependently of one another has each executable in a separate control

Figure 23: User, Service, and
Manager Threads

User Threads

User Service Thread

Manager Thread

Organizing Chaos

TotalView Users Guide: version 8.8 23

group. In contrast, processes created by fork()/exec() are in the same con-
trol group.
Share Group: All the processes within a control group that share the
same code. Same code means that the processes have the same execut-
able file name and path. In most cases, your program has more than one
share group. Share groups, like control groups, can be local or remote.
Workers Group: All the worker threads within a control group. These
threads can reside in more than one share group.
Lockstep Group: All threads that are at the same PC (program counter).
This group is a subset of a workers group. A lockstep group only exists
for stopped threads. By definition, all members of a lockstep group are
within the same workers group. That is, a lockstep group cannot have
members in more than one workers group or more than one control
group. A lockstep group only means anything when the threads are
stopped.

The control and share groups only contain processes; the workers and
lockstep groups only contain threads.

TotalView lets you manipulate processes and threads individually and by
groups. In addition, you can create your own groups and manipulate a
group’s contents (to some extent). For more information, see Chapter 13,
“Using Groups, Processes, and Threads,” on page 253.

The following figure shows a processor running five processes (ignoring
daemons and other programs not related to your program) and the threads
within the processes. This figure shows a control group and two share
groups within the control group.

Figure 24: Five-Processes:
Their Control and Share
Groups Control Group

Share Group 2

Share Group 1

One Process

The CPU

Organizing Chaos

24 Chapter 2: About Threads, Processes, and Groups

Many of the elements in this figure are used in other figures in this book.
These elements are as follows:

CPU The one outer square represents the CPU. All elements
in the drawing operate within one CPU.

Processes The five white inner squares represent processes being
executed by the CPU.

Control Group The large rounded rectangle that surrounds the five
processes shows one control group. This diagram
doesn’t indicate which process is the main procedure.

Share Groups The two smaller rounded rectangles having white
dashed lines surround processes in a share group. This
drawing shows two share groups within one control
group. The three processes in the first share group
have the same executable. The two processes in the
second share group share a second executable.

The control group and the share group only contain processes. The next
figure shows how TotalView organizes the threads in the previous figure. It
adds a workers group and two lockstep groups. (See Figure 25.)

This figure doesn’t show the control group since it encompasses everything in this figure.
That is, this example’s control group contains all of the program’s lockstep, share, and
worker group’s processes and threads.

Figure 25: Five Processes:
Adding Workers and
Lockstep Groups

Share Group 1

Workers Group

Lockstep Group 1

Lockstep Group 2

Share Group 2

Manager Threads

A Service Thread

Organizing Chaos

TotalView Users Guide: version 8.8 25

The additional elements in this figure are as follows:

Workers Group All nonmanager threads within the control group make
up the workers group. This group includes service
threads.

Lockstep Groups Each share group has its own lockstep group. The pre-
vious figure shows two lockstep groups, one in each
share group.

Service Threads Each process has one service thread. A process can
have any number of service threads, but this figure only
shows one.

Manager Threads
The ten manager threads are the only threads that do
not participate in the workers group.

The following figure extends the previous figure to show the same kinds of
information executing on two processors.

This figure differs from the other ones in this section because it shows ten
processes executing within two processors rather than five processes
within one processor. Although the number of processors has changed, the
number of control and share groups is unchanged. This makes a nice exam-
ple. However, most programs are not this regular.

Figure 26: Five Processes and
Their Groups on Two
Computers

Creating Groups

26 Chapter 2: About Threads, Processes, and Groups

Creating Groups

TotalView places processes and threads in groups as your program creates
them. The exception is the lockstep groups that are created or changed
whenever a process or thread hits an action point or is stopped for any rea-
son. There are many ways to build this type of organization. The following
steps indicate the beginning of how TotalView might do this.

Step 1 TotalView and your program are launched and your program begins executing.

Control group: The program is loaded and creates a group.
Share group: The program begins executing and creates a group.
Workers group: The thread in the main() routine is the workers group.
Lockstep group: There is no lockstep group because the thread is run-
ning. (Lockstep groups only contain stopped threads.)

Step 2 The program creates a thread.

Control group: The control group is unchanged.
Share group: The share group is unchanged.
Workers group: TotalView adds the thread to the existing group.
Lockstep group: There are no lockstep groups because the threads are
running.

Figure 27: Step 1: A Program
Starts

Figure 28: Step 1: A Program
Starts

Creating Groups

TotalView Users Guide: version 8.8 27

Step 3 The first process uses the exec() function to create a second process. (See
Figure 29.)

Control group: The group is unchanged.
Share group: TotalView creates a second share group with the process
created by the exec() function as a member. TotalView removes this pro-
cess from the first share group.
Workers group: Both threads are in the workers group.
Lockstep group: There are no lockstep groups because the threads are
running.

Step 4 The first process hits a break point.

Control group: The group is unchanged.
Share group: The groups are unchanged.
Workers group: The group is unchanged.
Lockstep group: TotalView creates a lockstep group whose member is
the thread of the current process. (In this example, each thread is its
own lockstep group.)

Figure 29: Step 3: Creating a
Process using exec()

Creating Groups

28 Chapter 2: About Threads, Processes, and Groups

Step 5 The program is continued and TotalView starts a second version of your
program from the shell. You attach to it within TotalView and put it in the
same control group as your first process.

Control group: TotalView adds a third process.
Share group: TotalView adds this third process to the first share group.
Workers group: TotalView adds the thread in the third process to the
group.
Lockstep group: There are no lockstep groups because the threads are
running.

Step 6 Your program creates a process on another computer.

Control group: TotalView extends the control group so that it contains
the fourth process, which is running on the second computer.
Share group: The first share group now contains this newly created pro-
cess, even though it is running on the second computer.
Workers group: TotalView adds the thread within this fourth process to
the workers group.

Figure 30: Step 5: Creating a
Second Version

Figure 31: Step 6: Creating a
Remote Process

Creating Groups

TotalView Users Guide: version 8.8 29

Lockstep group: There are no lockstep groups because the threads are
running.

Step 7 A process within the control group creates a thread. This adds a second
thread to one of the processes.

Control group: The group is unchanged.
Share group: The group is unchanged.
Workers group: TotalView adds a fifth thread to this group.
Lockstep group: There are no lockstep groups because the threads are
running.

Step 8 A breakpoint is set on a line in a process executing in the first share group.
By default, TotalView shares the breakpoint. The program executes until all
three processes are at the breakpoint.

Control group: The group is unchanged.
Share group: The groups are unchanged.
Workers group: The group is unchanged.
Lockstep groups: TotalView creates a lockstep group whose members
are the four threads in the first share group.

Figure 32: Step 7: Creating a
Thread

Figure 33: Step 8: Hitting a
Breakpoint

Simplifying What You’re Debugging

30 Chapter 2: About Threads, Processes, and Groups

Step 9 You tell TotalView to step the lockstep group.

Control group: The group is unchanged.
Share group: The groups are unchanged.
Workers group: The group is unchanged.
Lockstep group: The lockstep groups are unchanged. (There are other
lockstep groups; this is explained in Chapter 13, “Using Groups, Processes,
and Threads,” on page 253.)

What Comes Next This example could keep on going to create a more complicated system of
processes and threads. However, adding more processes and threads
won’t change the basics of what has been covered.

Simplifying What You’re Debugging

The reason you’re using a debugger is because your program isn’t operating
correctly and the way you think you’re going to solve the problem (unless it
is a &%$# operating system problem, which, of course, it usually is) is by
stopping your program’s threads, examining the values assigned to variables,
and stepping your program so you can see what’s happening as it executes.

Unfortunately, your multi-process, multi-threaded program and the com-
puters upon which it is executing have lots of things executing that you
want TotalView to ignore. For example, you don’t want to be examining
manager and service threads that the operating system, your programming
environment, and your program create.

Also, most of us are incapable of understanding exactly how a program is
acting when perhaps thousands of processes are executing asynchro-
nously. Fortunately, there are only a few problems that require full asyn-
chronous behavior at all times.

Figure 34: Step 9: Stepping
the Lockstep Group

Simplifying What You’re Debugging

TotalView Users Guide: version 8.8 31

One of the first simplifications you can make is to change the number of
processes. For example, suppose you have a buggy MPI program running
on 128 processors. Your first step might be to have it execute in an 8-pro-
cessor environment.

After you get the program running under TotalView control, run the process
being debugged to an action point so that you can inspect the program’s
state at that point. In many cases, because your program has places where
processes are forced to wait for an interaction with other processes, you
can ignore what they are doing.

TotalView lets you control as many groups, processes, and threads as you need to con-
trol. Although you can control each one individually, you might have problems remem-
bering what you’re doing if you’re controlling large numbers of these things indepen-
dently. TotalView creates and manages groups so that you can focus on portions of your
program.

In most cases, you don’t need to interact with everything that is executing.
Instead, you want to focus on one process and the data that this process
manipulates. Things get complicated when the process being investigated
is using data created by other processes, and these processes might be
dependent on other processes.

The following is a typical way to use TotalView to locate problems:

1 At some point, make sure that the groups you are manipulating do not
contain service or manager threads. (You can remove processes and
threads from a group by using the Group > Custom Group command.)

2 Place a breakpoint in a process or thread and begin investigating the
problem. In many cases, you are setting a breakpoint at a place where you
hope the program is still executing correctly. Because you are debugging
a multi-process, multi-threaded program, set a barrier point so that all
threads and process will stop at the same place.

Don’t step your program except where you need to individually look at what occurs in
a thread. Using barrier points is much more efficient. Barrier points are discussed in
“Setting Barrier Points” on page 364 and online within the Action Point area within
the Tip of the Week archive at http://www.totalviewtech.com/Support/Tips/.

3 After execution stops at a barrier point, look at the contents of your vari-
ables. Verify that your program state is actually correct.

4 Begin stepping your program through its code. In most cases, step your
program synchronously or set barriers so that everything isn’t running
freely.
Things begin to get complicated at this point. You’ve been focusing on
one process or thread. If another process or thread modifies the data and
you become convinced that this is the problem, you need to go off to it
and see what’s going on.

CLI: dgroups –remove

Simplifying What You’re Debugging

32 Chapter 2: About Threads, Processes, and Groups

You need to keep your focus narrow so that you’re only investigating a lim-
ited number of behaviors. This is where debugging becomes an art. A multi-
process, multi-threaded program can be doing a great number of things.
Understanding where to look when problems occur is the art.

For example, you most often execute commands at the default focus. Only
when you think that the problem is occurring in another process do you
change to that process. You still execute in the default focus, but this time
the default focus changes to another process.

Although it seems like you’re often shifting from one focus to another, you
probably will do the following:

Modify the focus so that it affects just the next command. If you are us-
ing the GUI, you might select this process and thread from the list dis-
played in the Root Window. If you are using the CLI, you use the dfocus
command to limit the scope of a future command. For example, the fol-
lowing is the CLI command that steps thread 7 in process 3:
dfocus t3.7 dstep
Use the dfocus command to change focus temporarily, execute a few
commands, and then return to the original focus.

This chapter is just an overview of the threads, processes, and groups.
Chapter 13, “Using Groups, Processes, and Threads,” on page 253 contains the
details.

TotalView Users Guide: version 8.8 33

Part II: Setting Up

This section of the TotalView Users Guide contains information about
running TotalView in the different types of environments in which
you execute your program.

Chapter 3: Getting Started with Remote Display Client
This chapter describes how you can start and interact with
TotalView when it is executing on another computer.

Chapter 4: Setting Up a Debugging Session
This chapter tells you what you need to know to start
TotalView and tailor how it works.

Chapter 5: Setting Up Remote Debugging Sessions
When you are debugging a program that has processes exe-
cuting on a remote computer, TotalView launches server pro-
cesses for these remote processes. Usually, you don’t need to
know much about this. The primary focus of this chapter is
what to do when you have problems.

If you aren’t having problems, you probably won’t ever look
at the information in this chapter.

Chapter 6: Setting Up MPI Debugging Sessions
When you are debugging a program that has processes exe-
cuting on a remote computer, TotalView launches server pro-
cesses for these remote processes. Usually, you don’t need to
know much about this. The primary focus of this chapter is
what to do when you have problems.

Debugging other kinds of parallel programs is discussed in
the next chapter.

Chapter 7: Setting Up Parallel Debugging Sessions
TotalView lets you debug programs created using many differ-
ent parallel environments, such as OpenMP, SHMEM, Global
Arrays, UPC, and the like. This chapter discusses how to set
up these environments.

Debugging MPI programs is discussed in the previous chapter.

34

TotalView Users Guide: version 8.8 35

c
h
a
p
t
e
r

Getting Started with
Remote Display Client

3

Using Remote Display

TotalView Remote Display lets you start and then view TotalView as it exe-
cutes on another system. For example, if you are using a Microsoft Win-
dows XP, invoking the Remote Display Client (this will be explained in a
moment) displays a window into which you can enter information about
how Remote Display can go from Windows to the system upon which
TotalView will execute. As Remote Display invokes TotalView on the remote
host, it need not be installed on your local machine.

Remote Display is bundled into all TotalView releases beginning at version
8.6. However, the Client can run only on Linux x86, Linux x86-64, Windows,
and Mac systems. No license is needed to run the Client, but TotalView run-
ning on any supported operating system must be a licensed version of
TotalView 8.6 or greater.

TotalView Remote Display has three components: a Client, a Server, and a
Viewer.

The Client is a window that runs on Linux x86 and Linux x86-64 systems,
Microsoft Windows XP, Vista, System 7, and Apple Mac OS X Intel.
The Server is invisible. It manages the movement of information from the
Viewer to the remote host and from the remote host back to the Client.
The Server can run on all systems that TotalView supports. For example,
you can run the Client on a Windows system and set up a Viewer environ-
ment on an IBM RS/6000 machine.
The Viewer is a window that appears on the system upon which you are
running the Client. All interactions between this window and the system
running TotalView are handled by the Server.

Figure 35 shows how these components interact.

Using Remote Display

36 Chapter 3: Getting Started with Remote Display Client

In this figure, the two large boxes represent the computer upon which you
execute the Client and the remote system upon which TotalView will run.
Notice where the Client, Viewer, and Server are located. The small box
labelled External SSH Host is the gateway machine inside your network. In
some cases, the Client may be inside your firewall. In others, it may be
located outside of it. This figure also shows that the Server is created by
TotalView or MemoryScape as it is contained within these programs and is
created after the Client sends a message to TotalView or MemoryScape.

Installing the Client

Before you install the Client, TotalView must already be installed.

You can find the files used to install the client in two places.

Remote Display Client files are within the remote_display subdirectory
within your TotalView installation directory. Here you will find clients for
Linux x86, x86-64, Windows XP, Vista, and System 7 as well as Apple Mac
OS X.
Clients may also be downloaded from our web site by going to http://
www.totalviewtech.com/download.htm?Product=RemoteDisplayClient.

Because Remote Display is built into TotalView, you do not need to have a
separate license for it. Remote Display works with your product’s license. If
you have received an evaluation license, that license lets you use Remote
Display on another system.

Installing on Linux
The installation procedure for the Client is straight-forward. The
remote_display directory contains two tar files that are used on a Linux x86
or a Linux 86-64 system.

1 Place a tar file within your toolworks installation directory if it is not
already there. You can install the Client on as many Linux x86 and Linux
x86-64 systems as you want as the Client is unlicensed. This means
TotalView can be run from any Client and more than one person can be
running Clients simultaneously. The only licensing requirement is that you

Figure 35: Remote
Display Components

Using Remote Display

TotalView Users Guide: version 8.8 37

have a license for the platform upon which TotalView will run. Of course,
the number of users who can run TotalView simultaneously is specified in
that product’s license.

2 Type tar xvf name_of_remote_display_file.tar. This creates and populates a
remote_display/bin directory.

3 Add the remote_display directory to your PATH environment variable. If
you place this directory in your PATH, typing remote_display_client.sh
invokes the Client.

Installing on Microsoft Windows
Before you install the Client, you must have installed TotalView on your
Linux or UNIX system. The Client file, contained in your remote_display
directory, is named TVT_RDC_Installer.release_number.exe. To use the
installer:

1 Either copy the exe file to your Windows XP or Vista system or place it in
a location that is directly accessible from your Windows machine.

2 Using File Explorer, navigate to the directory containing the installer and
then double-click on the installer exe file. The installer responds by dis-
playing the window shown in Figure 36.

3 Click the Next button and follow the instructions on the displayed screen.
As with many Windows applications, you are asked if the installer should
create an entry in the start menu and place an icon on your desktop that,
when clicked, invokes the Client. The very last screen has a check box that
you should leave checked. This lets you confirm that Remote Display is
installed correctly.

Installing on Apple Mac OS X Intel
Before you install the Client, you must have installed TotalView or
MemoryScape. The Client file, contained in your remote_display directory,
is named TVT_RDC_Installer.<release_number>.dmg. To use the installer:

Figure 36: Remote Display Client
Setup

Using Remote Display

38 Chapter 3: Getting Started with Remote Display Client

1 Either copy the dmg file to your Mac OS X system or place it in a location
that is directly accessible from your Mac machine.

2 Using Finder, navigate to the directory containing the dmg file and then
double-click on the installer dmg file. A window is displayed, showing the
Remote Display Client installer package, as shown in Figure 37.

3 Double-click the TotalViewRemoteDisplayClient.pkg icon. The installer
responds by displaying the following window:.

4 Click the Continue button and follow the instructions on the displayed
screen.

Figure 37: Remote Display Client
Package

Figure 38: Remote Display Client
Setup Apple Mac OS X

Using Remote Display

TotalView Users Guide: version 8.8 39

Sample Session

The TotalView Remote Display Client is simple to use. All you need do is fill
in some information, the Client does the rest.

Invoke the Client by typing the following on a Linux system:

remote_display_client.sh

If you are running on Windows, either click the desktop icon or go to the
TVT Remote Display item in the start menu. You’ll soon see the window
shown in Figure 39 on page 39.

This figure shows the Enter batch submission settings for the Remote Host
area. This area is visible only after you select a batch system in the Submit
to Batch Queuing System button.

If you ignore the edges of this window, there are no differences in the way
the Client window displays on Linux or on Windows.

Begin by entering the following information:

The name of the machine upon which TotalView will execute. While the
Client can only execute on Linux x86, Linux 86-64, and Windows XP and
Vista systems, the remote system can be any system upon which you are
licensed to run TotalView.
Your user name, a public key file, or other ssh options. For more informa-
tion, see “Naming Intermediate Hosts” on page 41.
Commands to execute before TotalView begins.

Figure 39: Remote Display Client Window

Using Remote Display

40 Chapter 3: Getting Started with Remote Display Client

The directory in which TotalView resides.
The path name of your executable. This can either be a full path name or
a path name relative to your home directory. If you leave the executable
text area empty, TotalView begins executing in exactly the same way as if
you had typed totalview on the remote host. Generally, this means you
need to add it to your remote host’s PATH environment variable.

You can optionally add any command-line options that you would use if
you were running on the remote system. You can also add any command-
line options that your program requires.

If the host machine is not directly connected to the machine upon which
you are running the Client, you must specify the route Remote Display will
take to the remote host.

Next, press the Launch Debug Session button. In a moment, you’ll see a
window that asks for your password. (See Figure 40.)

Depending upon the way you are connecting, you may be prompted twice
for your password. The first prompt occurs when Remote Display is search-
ing ports on a remote system. The second may or may not appear depend-
ing upon the way you access the remote host. You can often simplify log-
ging in by using a public key file.

After you enter your remote host password, a window opens on the local
Client system. This window contains TotalView as well as an xterm running
on the remote host that you can use to enter operating system and other
commands. If you do not add an executable name, TotalView displays its
File > New Program dialog box. If you do enter a name, .

When you are done using TotalView, go back to the Client and terminate
the Viewer and Server by pressing the End Debug Session button. (The
Launch Debug Session button changes to this button after you launch the
session.) A second method is to click the Close button on the Viewer’s win-
dow. This removes the Viewer Window but does not end the debugging ses-
sion. You still need to select the Client’s End Debug Session button. The
second method might seem less useful as you still need to click the End
Debug Session button. However, as your desktop may have many windows
running on it, this can be the easier way because the Viewer often obscures
the Client.

Figure 40: Asking for
Password

Using Remote Display

TotalView Users Guide: version 8.8 41

Naming Intermediate Hosts

If the Client system does not have direct access to the remote host, you
must specify the path to the remote host. The order in which you enter
hosts is the path Remote Display uses to reach your remote host. Buttons
immediately to the left of this area let you change the order, and add and
delete lines.

The most common access method is by a user name. If this is wrong for
your environment, click on the downward facing arrow in the Access By
area. Figure 41 on page 41 shows your choices:

Submitting a Job to a Batch Queuing System
TotalView Remote Display lets you submit jobs to the PBS Pro and Load-
Leveler batch queuing systems. (See Figure 42.)

Begin by selecting a batch system by clicking on the Submit job to Batch
Queuing system pull down list. From this list, select either PBS Pro (which is
the option shown) or LoadLeveler. Default values for the Submit command
and the script that Remote Display runs are filled in. The scripts for PBS Pro
and Loadlever were installed when you installed TotalView.

You can, of course, change both of these values if that is what your system
requires. Additional information about these scripts can be found in “Batch
Scripts” on page 44.

The Additional Options area lets you enter arguments that are sent to the
batch system. The options you add override options named in the batch
script.

You’re ready to launch. Do this by pressing the Launch Debug Session but-
ton. Behind the scenes, a job is submitted that will launch the Server and
the Viewer when it reaches the head of the batch queue.

Setting Up Your Systems and Security

In order to maintain a secure environment, Remote Display uses SSH. The
Remote Display Server, which runs on the remote host, allows only RFB
(Remote Frame Buffer) connections from and to the remote host. No

Figure 41: Access By Options

Using Remote Display

42 Chapter 3: Getting Started with Remote Display Client

incoming access to the Server is allowed and the Server can only connect
back to the Viewer over an established SSH connection. In addition, only
one Viewer connection is allowed to the Server.

As Remote Display connects to systems, you are asked to enter your pass-
word. If you are allowed to use keyless ssh, you can simplify the connection
process. You should check with your system administrator to confirm that
this kind of connection is allowed and the ssh documentation for informa-
tion on generating and storing key information.

Here are three things that must occur before the Client can connect to the
remote host:

If you use an LM_LICENSE_FILE environment variable to identify where
your license is located, you must insure that this variable is read in on
the remote host. This will be done automatically if the variable’s defini-
tion is contained within one of the files read by the shell when Remote
Display logs in.
ssh must be available on all nonWindows systems being accessed.
X Windows must be available on the remote system.

Session Profile Management

The Client lets you save the information you enter. At a later time, you can
restore these settings by clicking on the profile’s name in the Session Profile
area.

Figure 42: Remote Display Window: Showing Batch Options

Using Remote Display

TotalView Users Guide: version 8.8 43

The Client initially saves the information you first enter into a profile whose
name is what you entered in the remote host area. Figure 43 on page 43
shows two saved profiles.

After you click on a profile, the Client writes this previously saved informa-
tion into its text fields.

The four icons within the Session Profiles area are described in “Session Pro-
files Area” on page 46.

If you make changes to the data in a text field, the Client automatically
changes the information in the profile. If this is not what you want, click on
the “Create” icon. The client then displays a dialog box into which you can
type a new session profile name. The Client will write this existing data into
a new profile instead of saving it to the original profile.

Sharing Profiles
Here’s how you share a profile with others:

1 Select a profile.
2 Export it to a file.
3 Let others know what it is called and where it is located. They can then

import the file after starting their own Remote Display setting.

Remote Display Server and Viewer

The Remote Display Server is started by the Client on the remote host. It
also creates a virtual window on the remote host. The Server than sends
the virtual window to the Viewer window running on your system. The
Viewer is just another window running on the Client’s system. You can inter-
act with the Viewer window in the same way you interact with any window
that runs directly on your system.

Behind the scenes, your interactions are sent to the Server, and the Server
interacts with the virtual window running on the remote host. Changes
made by this interaction are sent to the Viewer on your system. Perfor-
mance depends on the load on the remote host and network latency.

The server looks for (in order) the following window managers on the
remote host:

icewm
fvwm
twm
mwm

Figure 43: Session Profiles

Using Remote Display

44 Chapter 3: Getting Started with Remote Display Client

If you want to use another window manager or ensure a window manger is
invoked first, use the -wm window_manager_name in the Arguments for
TotalView (or Arguments for MemoryScape) text field. If you do this, the
path of the window manager must be named in your PATH environment
variable.

If you need to specify a font path on your remote host, use the -fp pathname
in the Arguments for TotalView (or Arguments for MemoryScape) text field.
While Remote Display checks the obvious places, these places may not be
obvious on some architectures.

To change the size of the Remote Display Viewer window created, use the
-geometry widthxheight in the Arguments for TotalView (or Arguments for
MemoryScape) text field. The default is 1024x768. To specify a path for the
rgb file on the remote host, use -co pathname in the Arguments for TotalView
(or Arguments for MemoryScape) text field. While Remote Display uses the
default location, this may not be the same on architectures using a window
manager on the remote host.

If you are running the Client on a Windows system, you’ll see the following
icons at the top of the window:

From left to right, the commands associated with these icons are:

Connection options
Connection information
Full Screen–this does not change the size of the Viewer window
Request screen refresh
Send Ctrl-Alt-Del
Send Ctrl-Esc
Send Ctrl key press and release
Send Alt key press and release
Disconnect

Batch Scripts

The actions that occur when you select PBS Pro or LoadLeveler within the
Submit job to Batch Queueing System are defined in two files: tv_PBS.csh
and tv_LoadLever.csh. If the actions defined in these scripts area not cor-
rect for your environment, you can either change one of these scripts or
add a new script, which is the recommended way.

You must place the created script you create into installation_dir/
totalview_version/batch.For example, you could place a new script file called
Run_Large.csh into the installation_dir/toolworks//batch directory.

Figure 44: Local Data in a
Stack Frame

Using Remote Display

TotalView Users Guide: version 8.8 45

tv_PBS.csh Script
Here are the contents of the tv_PBS.csh script file:

#!/bin/csh -f

Script to submit using PBS

These are passed to batch scheduler::

account to be charged
##PBS -A VEN012

pass users environment to the job
##PBS -V

name of the job
#PBS -N TotalView

input and output are combined to standard
##PBS -o PBSPro_out.txt
##PBS -e PBSPro_err.txt

##PBS -l feature=xt3

#PBS -l walltime=1:00:00,nodes=2:ppn=1

Do not remove the following:
TV_COMMAND
exit

#
end of execution script

You can uncomment or change any line and you can add commands to this
script. The only lines you cannot change are:

TV_COMMAND
exit

tv_LoadLeveler.csh Script
Here are the contents of the tv_Loadleveler.csh script file:

#! /bin/csh -f
@ job_type = bluegene
#@ output = tv.out.$(jobid).$(stepid)
#@ error = tv.job.err.$(jobid).$(stepid)
#@ queue
TV_COMMAND

You can uncomment or change any line and you can add commands to this
script. The only line you cannot change is:

TV_COMMAND

Remote Display Commands

46 Chapter 3: Getting Started with Remote Display Client

Remote Display Commands

The TotalView Remote Display Client lets you specify the information you
need to launch TotalView on a remote system. After launching the debug
session, the Remote Display Viewer Window appears and you can now
interact with the TotalView running on that remote server. You will find
details on how this happens in “Using Remote Display” on page 35. The fol-
lowing sections tell you what the individual controls and commands do
within the Client Window.

To see how you use the client, see “Sample Session” on page 39.

Session Profiles Area

This section of the Client window has two sections. The first has four icons.
From left to right they are:

The second part names the profiles that you have either created or
imported. After selecting a profile, its attributes are displayed in the right
side of the window.

Remote Host and Routing Area
This top right portion of the Client window lets you:

Name the remote host upon which TotalView will run.
Indicate the method you will use to access the remote host. You can ac-
cess it by providing your user name on the remote host, a public key file,
or ssh options.
Optionally select intermediate hosts (if they are needed), the method
used to access the intermediate host, and the value needed to use this
method.

You enter information into these fields as follows:

Remote Host Type in the name of the machine upon which TotalView
will execute. TotalView must be installed on that ma-

Creates a new profile using the current settings. If you do not use this button,
the Client automatically writes the changes you’ve made back into the selected
profile when you press the Launch Debug Session button at the bottom of
the Client window.
Deletes the selected profile.

Imports a file. After selecting this command, the Client displays a file explorer
window. Use this window to locate the profile to be loaded. After you import a
file, it remains within your Client profile until you delete it.
Exports a file. After selecting this command, the Client displays a file explorer
window. Use this window to locate a directory into which the Client will write the
selected profile.

Remote Display Commands

TotalView Users Guide: version 8.8 47

chine. If you do not have a direct path to the remote
host, see “Host” on page 47.

User Name Type in your user name on the remote host.

Commands Type in commands (in a comma-separated list) to exe-
cute on the remote host before TotalView or
MemoryScape executes.

Host If you cannot directly reach the machine upon which
TotalView will execute, enter an intermediate host
name of the route the Client will take, the Access By
method used to reach this remote host, and the infor-
mation required by the Access By entry. If your network
has a gateway machine, you would name it here in ad-
dition to other systems in the path to the remote host.

Commands In the column following the Access Type, type in com-
mands (in a comma-separated list) to execute when
connected to the remote host, before connecting to the
next host.

Access By and Access Value
Select one of these options:

(1) User Name is what you enter into a shell command
such as ssh to login to the host machine. You would
enter this name in the Access Value field.

(2) Public Key File tells the client that access informa-
tion is entered into the file entered into the Access
Value field.

(3) Other SSH Options will contain the ssh arguments
needed to access the intermediate host. These are the
same arguments you normally add to the ssh command.

Figure 45: Access By Options

Remote Display Commands

48 Chapter 3: Getting Started with Remote Display Client

Route management controls

Product Area
The product area within the Client window is where you enter information
needed to start TotalView on the remote host. You enter it in the TotalView
tab, shown in the following figure.

TotalView Directory on Remote Host
Enter the directory name in which theexecutable re-
sides. If you have changed the executable’s pathname,
you’ll need to specify the new pathname.

Arguments for ... Enter TotalView command-line options.

Your Executable (path & name)
Enter either a complete or relative pathname to the
program being debugged. “Relative” means relative to
your home directory.

Arguments for Your Executable
If your program needs arguments, enter them in this
field. If you were executing TotalView directly, these are
the arguments that follow the –a command-line option.

Submit job to Batch Queuing System
This pull down list shows the queuing systems that you
can select. This will be explained in the “Using the Submit
to Batch Queuing System Entries” on page 49 topic.

Launch Debug Session
Pressing this button starts the process of creating the
Remote Display Viewer. Typically, you will see an xterm

Adds an additional row into which you can enter a
Host, Access By method, and an Access Value.
Deletes a row from the table.

Moves the selected row up one row.

Moves the selected row down one row.

Figure 46: Remote Host
Information Area

Remote Display Commands

TotalView Users Guide: version 8.8 49

window into which you can type passwords for each of
the systems. All connections in the route are made us-
ing ssh.

Using the Submit to Batch Queuing System Entries
If you are sending the debugging job to a batch queuing system, you need
to select an entry in the Submit job to Batch Queuing System pull down list.
After selecting an entry, the lower right portion adds a section into which
you can enter information that is needed by the batch system. TFigure 48
on page 49 shows these changes:

The items unique to this area are the PBS or LoadLeveler Submit Command.
The default values are qsub for PBS Pro and llsubmit for LoadLeveler.

Figure 47: Choosing a Batch Queuing System

Figure 48: Remote Display Client: Showing Batch Options

Remote Display Commands

50 Chapter 3: Getting Started with Remote Display Client

PBS or LoadLeveler Script to run
The default values are tv_PBS.csh for PBS Pro and
tv_LoadLeveler.csh for LoadLeveler. For more informa-
tion, see the “Batch Scripts” on page 44 topic.

Additional PBS or LoadLeveler Options
If you need additional command-line options to either
PBS or LoadLeveler, enter them here. What you enter
here overrides the same setting in the script being run.
For more information, see the “Batch Scripts” on page 44
topic.

File > Profile > Save
After selecting this command, the Client asks that you name the profile
information it is about to create. The values contained within this profile
are those currently being displayed in the Client window. After pressing OK,
the Client saves the profile and places its name in the Session Profiles area.
You do not need to save changes you make to the current profile as the Cli-
ent automatically saves them. (See Figure 49 on page 50.)

File > Profile > Delete
Use this command to delete the currently selected profile. You need to
confirm that you really want to delete the profile. (See Figure 50 on
page 50.)

File > Profile > Import
Select this command to tell the Client that it should import a profile previ-
ously written into a file. The Client responds by displaying a file explorer
window so that you can select the profile being imported.

Figure 49: Saving a Profile

Figure 50: Deleting a Profile

Remote Display Commands

TotalView Users Guide: version 8.8 51

File > Profile > Export
Select this command to tell the Client that it should export the selected
profile. The Client responds by displaying a file explorer window so that
you can select a directory into which the Client writes the profile.

File > Exit
Select this command to shut down the Client Window. If sessions are open,
the Client displays the following question:

Figure 51: Exit Dialog Box

Remote Display Commands

52 Chapter 3: Getting Started with Remote Display Client

TotalView Users Guide: version 8.8 53

c
h
a
p
t
e
r

Setting Up a
Debugging Session

4

This chapter explains how to set up a TotalView session. It also
describes some of the most-used set-up commands and proce-
dures. For information on setting up remote debugging, see Chapter
5, “Setting Up Remote Debugging Sessions,” on page 85. For information
on setting up parallel debugging sessions, see Chapter 6, “Setting Up
MPI Debugging Sessions,” on page 103 and Chapter 7, “Setting Up Paral-
lel Debugging Sessions,” on page 137.

This chapter contains the following sections:

“Compiling Programs” on page 53
“Starting TotalView” on page 55
“Exiting from TotalView” on page 60
“Loading Programs” on page 60
“Attaching to Processes” on page 63
“Detaching from Processes” on page 64
“Examining Core Files” on page 65
“Viewing Process and Thread States” on page 68
“Handling Signals” on page 71
“Setting Search Paths” on page 73
“Setting Preferences” on page 76

Compiling Programs

Compilers and Platforms

Linking with the dbfork Library

Compiling Programs

54 Chapter 4: Setting Up a Debugging Session

The first step in getting a program ready for debugging is to add your com-
piler’s –g debugging command-line option. This option tells your compiler
to generate symbol table debugging information; for example:

cc –g –o executable source_program

You can also debug programs that you did not compile using the –g option,
or programs for which you do not have source code. For more information,
see “Viewing the Assembler Version of Your Code” on page 175.

The following table presents some general considerations “Compilers and
Platforms in the TotalView Reference Guide contains additional considerations.

Using File Extensions

When TotalView opens a file, it uses the file's extension to determine which
programming language you used. If you are using an unusual extension, you
can manually associate your extension with a programming language by set-
ting the TV::suffixes variable in a startup file. For more information, see the
“TotalView Variables” chapter in the TotalView Reference Guide.

Your installation may have its own guidelines for compiling programs. Your
site administrator may have made a <a href=”../Other/

Compiler Option or Library What It Does When to Use It
Debugging symbols option
(usually –g)

Generates debugging
information in the symbol
table.

Before debugging any
program with TotalView.

Optimization option
(usually –O)

Rearranges code to
optimize your program’s
execution.
<p>Some compilers won’t
let you use the –O option
and the –g option at the
same time.</p>
<p>Even if your compiler
lets you use the –O option,
don’t use it when debugging
your program, since strange
results often occur.</p>

After you finish
debugging your program.

multi-process programming
library (usually dbfork)

Uses special versions of the
fork() and execve() system
calls.
<p>In some cases, you
need to use the –lpthread
option.</p>
<p>For more information
about dbfork, see “Linking
with the dbfork Library”
contained in the “Compilers
and Platforms” Chapter of
the TotalView Reference
Guide.</p>

Before debugging a multi-
process program that
explicitly calls fork() or
execve().
<p>See “Debugging
Processes That Call the fork()
Function” on page 363 and
“Debugging Processes that
Call the execve() Function”
on page 363.</p>

Starting TotalView

TotalView Users Guide: version 8.8 55

customer_compiling.html ” target=”_top”>link to information
located on your site.

Starting TotalView

Setting Up Remote Debugging Sessions

Setting Up Parallel Debugging Sessions

Initializing TotalView

Loading Programs

Attaching to Processes

Examining Core Files

TotalView Command-Line Options

TotalView can debug programs that run in many different computing environ-
ments and which use many different parallel processing modes and systems.
This section looks at few of the ways you can start TotalView. See the
“TotalView Command Syntax” chapter in the TotalView Reference Guide for more
detailed information.

In most cases, the command for starting TotalView looks like the following:

totalview [executable [corefiles]] [options]

where executable is the name of the executable file to debug and corefile is the
name of the core file to examine.

Your environment may require you to start TotalView in another way. For
example, if you are debugging an MPI program, you must invoke TotalView
on mpirun. For details, see Chapter 7, “Setting Up Parallel Debugging Sessions,”
on page 137.

You can use the GUI and the CLI at the same time. Use the Tools >
Command Line command to display the CLI’s window.

Your installation may have its own procedures and guidelines for running
TotalView. Your site administrator may have made a <a href=”../Other/
customer_running_tv.html” target=”_top”>link to information
located on your site.

The following examples show different ways that you might begin debug-
ging a program:

Starting TotalView totalview Starts TotalView without loading a program or core file.
Instead, TotalView displays its File > New Program dia-
log box. You can now fill in information that allows

CLI: totalviewcli [executable [corefiles]] [options]

Starting TotalView

56 Chapter 4: Setting Up a Debugging Session

TotalView to load your program. (See Figure 52 on
page 56.)

Notice the two checkboxes on the Program tab. These
checkboxes let you enable memory debugging and en-
able notifications—notifications tell TotalView to stop
executing when memory events occur.

Starting on Mac OS X

If you installed TotalView on a Macintosh using the ap-
plication bundle, you can click on the TotalView icon. If
you’ve installed the .dmg version, you can start
TotalView from an xterm by typing:

install_path/TotalView.app/totalview

where install_path is where TotalView is installed.

If the way TotalView was installed on your system was
not installed without procmod permission, you will not
be able to debug programs. If TotalView detects this
problem, it displays a dialog box containing informa-
tion describing what you should do.

Debugging a
program

totalview executable
Starts TotalView and loads the executable program.

If you installed TotalView on a Macintosh using the ap-
plication bundle, you can drag your program’s execut-
able to the TotalView icon on your desktop.

CLI: totalviewcli then dload executable

Figure 52: File > New
Program Dialog
Box

CLI: totalviewcli executable

Starting TotalView

TotalView Users Guide: version 8.8 57

If you type an executable name, TotalView remembers
that name and many of its arguments.

Debugging a core file totalview executable corefiles
Starts TotalView and loads the executable program and
the corefile core file.

The corefiles argument lets you name more than one
core file that is associated with the same executable. In
addition, you can use wild cards in the core file name.

Passing arguments to
the program being

debugged

totalview executable –a args
Starts TotalView and passes all the arguments following
the –a option to the executable program. When you use
the –a option, you must enter it as the last TotalView
option on the command line.

If you don’t use the –a option and you want to add ar-
guments after TotalView loads your program, either add
them using the Arguments tab within the
File > New Program dialog box or use the Process >
Startup command.

Debugging a
program that runs on

another computer

totalview executable –remote hostname_or_address[:port]
Starts TotalView on your local host and the tvdsvr on a
remote host. After TotalView begins executing, it loads
the program specified by executable for remote debug-
ging. You can specify a host name or a TCP/IP address. If
you need to, you can also enter the TCP/IP port number.

Setting Up Remote Debugging Sessions

If TotalView fails to automatically load a remote execut-
able, you may need to disable autolaunching for this
connection and manually start the tvdsvr. (Autolaunching
is the process of automatically launching tvdsvr pro-
cesses.) You can disable autolaunching by adding the
hostname:portnumber suffix to the name you type in the
Host field of the File > New Program dialog box. As al-
ways, the portnumber is the TCP/IP port number on
which TotalView server is communicating with
TotalView. See “Setting Up and Starting the TotalView Server”
on page 85 for more information.

CLI: dattach –c corefiles –e executable

CLI: totalviewcli executable –a args

CLI: dset ARGS_DEFAULT {value}

CLI: totalviewcli executable
–r hostname_or_address[:port]

Starting TotalView

58 Chapter 4: Setting Up a Debugging Session

TotalView Individual does not allow remote debugging.

Debugging an MPI
Program

totalview executable
(method 1) In many cases, you can start an MPI program
in much the same way as you would start any other
program. However, you will need to select the Parallel
tab within the File > New Programs dialog box, and se-
lect the MPI version in addition to other options.

mpirun -np count -tv executable
(method 2) The MPI mpirun command starts the
TotalView pointed to by the TOTALVIEW environment
variable. TotalView then starts your program. This pro-
gram will run using count processes.

Using gnu_debuglink
Files

totalview executable
If you have prepared a gnu_debuglink file, TotalView
can access this information. For more information, see
“Using gnu_debuglink Files” within the Compilers and
Platforms chapter of the TotalView Reference Guide.

Here’s where you can find more information:

Debugging parallel programs such as MPI, PVM, or UPC, see Chapter 7,
“Setting Up Parallel Debugging Sessions,” on page 137.
The totalview command, see “TotalView Command Syntax” in the TotalView
Reference Guide.
Remote debugging, see “Setting Up and Starting the TotalView Server” on
page 85 and “TotalView Debugger Server (tvdsvr) Command Syntax” in the
TotalView Reference Guide.

Initializing TotalView

Starting TotalView

TotalView Variables

Saving Action Points to a File

When TotalView begins executing, it reads initialization and startup informa-
tion from a number of files. The two most common are initialization files that
you create and preference files that TotalView creates.

An initialization file is a place where you can store CLI functions, set variables,
and execute actions. TotalView interprets the information in this file when-
ever it begins executing. This file, which you must name tvdrc, resides in the
.totalview subdirectory contained in your home directory. TotalView creates
this directory for you the first time it executes.

TotalView can actually read more than one initialization file. You can place
these files in your installation directory, the .totalview subdirectory, the
directory in which you invoke TotalView, or the directory in which the pro-
gram resides. If an initialization file is present in one or all of these places,
TotalView reads and executes each. Only the initialization file in your
.totalview directory has the name tvdrc. The other initialization files have
the name .tvdrc. That is, a dot precedes the file name.

Starting TotalView

TotalView Users Guide: version 8.8 59

Before Version 6.0, you placed your personal .tvdrc file in your home directory. If you
do not move this file to the .totalview directory, TotalView will still find it. However, if
you also have a tvdrc file in the .totalview directory, TotalView ignores the .tvdrc file
in your home directory.

TotalView automatically writes your preferences file to your .totalview subdi-
rectory. Its name is preferences6.tvd. Do not modify this file as TotalView
overwrites it when it saves your preferences.

If you add the –s filename option to either the totalview or totalviewcli shell
command, TotalView executes the CLI commands contained in filename.
This startup file executes after a tvdrc file executes. The –s option lets you,
for example, initialize the debugging state of your program, run the pro-
gram you’re debugging until it reaches some point where you’re ready to
begin debugging, and even create a shell command that starts the CLI.

The following figureFigure 53 shows the order in which TotalView executes
initialization and startup files.

The .Xdefaults file, which is actually read by the server when you start
X Windows, is only used by the GUI. The CLI ignores it.

The tvdinit.tvd file resides in the TotalView lib directory. It contains startup
macros that TotalView requires. Do not edit this file. Instead, if you want to
globally set a variable or define or run a CLI macro, create a file named
.tvdrc and place it in the TotalView lib directory.

As part of the initialization process, TotalView exports three environment
variables into your environment: LM_LICENSE_FILE, TVROOT, and either
SHLIB_PATH or LD_LIBRARY_PATH.

If you have saved an action point file to the same subdirectory as your pro-
gram, TotalView automatically reads the information in this file when it
loads your program.

You can also invoke scripts by naming them in the TV::process_load_callbacks
list. For information on using this variable, see the “Variables” chapter of the
TotalView Reference Guide.

If you are debugging multi-process programs that run on more than one
computer, TotalView caches library information in the .totalview subdirec-
tory. If you want to move this cache to another location, set

Figure 53: Startup and
Initialization Sequence preferences6.tvd.Xdefaults

global tvdinit.tvd

global .tvdrc

-e and –s tvdrc

a local .tvdrc

command options

executable.tvd

Exiting from TotalView

60 Chapter 4: Setting Up a Debugging Session

TV::library_cache_directory to this location. TotalView can share the files in
this cache directory among users.

Exiting from TotalView

Starting TotalView

To exit from TotalView, select File > Exit. You can select this command in
the Root, Process, and Variable Windows. After selecting this command,
TotalView displays the dialog box shown in Figure 54 on page 60.following
dialog box:

Select Yes to exit. As TotalView exits, it kills all programs and processes that
it started. However, programs and processes that TotalView did not start
continue to execute.

If you have a CLI window open, TotalView also closes this window. Similarly, if you type
exit in the CLI, the CLI closes GUI windows. If you type exit in the CLI and you have
a GUI window open, TotalView still displays this dialog box.

Loading Programs

Starting TotalView

Attaching to Processes

Detaching from Processes

TotalView can debug programs on local and remote hosts, and programs
that you access over networks and serial lines. The File > New Program

Figure 54: File > Exit
Dialog Box

CLI: exit
If you have both the CLI and the GUI open and only want to exit
from the CLI, type Ctrl+D.

Loading Programs

TotalView Users Guide: version 8.8 61

command, which is located in the Root and Process Windows, loads local
and remote programs, core files, and processes that are already running.

When entering a program’s name, you can use a full or relative path name
in the Executable and Core File fields. If you enter a file name, TotalView
searches for it in the list of directories named using the File > Search Path
command or listed in your PATH environment variable.

Your license limits the number of programs you can load. For example,
TotalView Individual limits you to sixteen processes or threads.

Loading Programs Using the GUI

The Program page within the File > New Program dialog box lets you load
programs in three ways by selecting commands in the top left area of the
Program tab. You can:

Start a new process
Type the path name in the Program area within the Program tab. (See
Figure 55.)

You can either type the name of your program in the Program area or
press the Browse button to look for the file. Because TotalView remem-
bers programs you’ve previously debugged, you may find your program in
this pulldown list.
If the program is to be executed on another computer, you can name that
computer by selecting the computer’s name in the host area. If that com-
puter isn’t on the displayed list, select Add host (which is an entry in the
list on the right) and enter its name in the displayed dialog box.

CLI: dset EXECUTABLE_PATH

Figure 55: Start a
New Process

Loading Programs

62 Chapter 4: Setting Up a Debugging Session

If TotalView supports your program’s parallel process runtime library (for example,
MPI, PVM, or UPC), it automatically connects to remote hosts. For more information,
see Chapter 7, “Setting Up Parallel Debugging Sessions,” on page 137.

Attach to process
Selecting this entry from the pulldown list on the left adds a list of pro-
cesses running on a machine to which you can attach. (See Figure 56 on
page 62.)

This new information at the bottom of the window is a list of the pro-
cesses executing on the selected host. To attach to a program, simply
click on the program’s name, then press the OK button.
You can select processes on other hosts by changing the information in
the on host area.

You cannot attach to processes running on another host if you are using
TotalView Individual.

For more information, see “Attaching to Processes” on page 63.
Open a core file
Selecting this entry from the pulldown list changes the information being
displayed in the dialog box so that you can open a core file. (See
Figure 57.)
The dialog box now contains a text field and browse button that you can
use to name the core file, which is usually named core (of course). TotalView
also requires that you enter the name of the program that dumped the core
file.
For more information, see “Examining Core Files” on page 65.

Figure 56: Attach to an
Existing Process

Loading Programs

TotalView Users Guide: version 8.8 63

Loading Programs Using the CLI

When using the CLI, you can load programs in a number of ways. Here are
some of them:

Start a new process
dload –e executable

Open a core file
dattach –c corefile –e executable

Load a program using its process ID
dattach executable pid

Load a program on a remote computer
dload executable –r hostname

You can type the computer’s name (for example,
gandalf.totalviewtech.com) or an IP address.

Load a poe program
dload –mpi POE –np 2 –nodes \

–starter_args "hfile=~/my_hosts"

Attaching to Processes

Seeing Attached Process States

Starting TotalView

Using the Root Window

Loading Programs

If a program you’re testing is hung or looping (or misbehaving in some other
way), you can attach to it while it is running. TotalView lets you attach to sin-
gle and multi-process programs, and these programs can be running
remotely.

Figure 57: Open a Core
File

Loading Programs

64 Chapter 4: Setting Up a Debugging Session

To attach to a process, select the Attach to an existing process item within
the Program Page in the File > New Program command. (See Figure 58.)

When you exit from TotalView, TotalView kills all programs and processes that it started.
However, programs and processes that were executing before you brought them under
TotalView’s control continue to execute.

While you must link programs that use fork() and execve() with the
TotalView dbfork library so that TotalView can automatically attach to them
when your program creates them, programs that you attach to need not be
linked with this library.

You cannot attach to processes running on another host if you are using
TotalView Individual.

Detaching from Processes

You can either detach from a group of processes or detach from one process.

Use the Group > Detach command to remove attached processes within a
control group. As TotalView executes this command, it eliminates all of the
state information related to these processes. If TotalView didn’t start a pro-
cess, it continues executing in its normal run-time environment.

Process > Detach Command

ddetach Command

Thread > Continuation Signal Command

CLI: dattach executable pid

Figure 58: Attaching to
an existing process

Loading Programs

TotalView Users Guide: version 8.8 65

To detach from processes that TotalView did not create:

1 (Optional) After opening a Process Window on the process, select the
Thread > Continuation Signal command to display the following dialog
box.(See Figure 59.)

Choose the signal that TotalView sends to the process when it detaches
from the process. For example, to detach from a process and leave it
stopped, set the continuation signal to SIGSTOP.

2 Select OK.
3 Select the Process > Detach command.

When you detach from a process, TotalView removes all breakpoints that
you have set in it.

Examining Core Files

Loading Programs

Using the Process Window

If a process encounters a serious error and dumps a core file, you can look
at this file using one of the following methods:

Start TotalView as follows:
totalview filename corefile [options]

CLI: TV::thread.
The examples at the end of TV::thread discussion show setting a
signal.

Figure 59: Thread >
Continuation Signal
Dialog Box

CLI: ddetach

CLI: totalviewcli filename corefile [options]

Loading Programs

66 Chapter 4: Setting Up a Debugging Session

Select the File > New Program command from the Root Window and
then select Open a core file from the list on the left side of the window.
You will now need to type the program and core file’s name (See
Figure 60.) .

If the program and core file reside on another system, you will, of course,
need to name that system in the host area.

If your operating system can create multi-threaded core files (and most
can), TotalView can examine the thread in which the problem occurred. It
can also show you information about other threads in your program.

The Process Window displays the core file, with the Stack Trace, Stack
Frame, and Source Panes showing the state of the process when it dumped
core. The title bar of the Process Window names the signal that caused the
core dump. The right arrow in the line number area of the Source Pane indi-
cates the value of the program counter (PC) when the process encountered
the error.

You can examine the state of all variables at the time the error occurred.
Chapter 14, “Examining and Changing Data,” on page 281 contains more
information.

If you start a process while you’re examining a core file, TotalView stops
using the core file and switches to this new process.

CLI: dattach –c corefile –e executable

Figure 60: Open a
Core File

Loading Programs

TotalView Users Guide: version 8.8 67

Setting Command-line Arguments and Environment
Variables

Because you are loading the program from within TotalView, you will not
have entered the command-line arguments that the program needs. The
Arguments page allows you to enter what ever is needed. (See Figure 61.)

Either separate each argument with a space or place each one on a sepa-
rate line. If an argument contains spaces, enclose the entire argument in
double-quotation marks.

When TotalView begins executing, it reads in your environment variable
and, when your program begins executing, will ensure that your program
has access to these variables. Use the Environment variables area to add
additional environment variables or to override values of existing variables.

TotalView does not display the variables that were passed to it when you started your
debugging session. Instead, this area of this tabbed page just displays the variables you
added using this command.

The format for specifying an environment variable is name=value. For exam-
ple, the following definition creates an environment variable named
DISPLAY whose value is enterprise:0.0:

DISPLAY=enterprise:0.0

You can also enter this information using the Process Window’s Process >
Startup Parameters command.

Altering Standard I/O

Use the controls within the Standard I/O page to alter standard input, out-
put, and error. In all cases, you name the file to which TotalView will write or

Figure 61: Setting
Command-Line
Options and
Environment
Variables

Viewing Process and Thread States

68 Chapter 4: Setting Up a Debugging Session

from which TotalView will read information. Other controls tell TotalView
that it should append to an existing file if one exists instead of overwriting
it and if it should merge standard out and standard error to the same
stream. (See Figure 62.)

You can also enter this information using the Process Window’s Process >
Startup Parameters command.

Viewing Process and Thread States

Seeing Attached Process States

Seeing Unattached Process States

Using the Root Window

Using the Process Window

Process and thread states are displayed in the following:

The Root Window.
The information within the File > New Program dialog box.
The process and thread status bars of the Process Window.
The Threads tab of the Process Window.

Figure 62: Resetting
Standard I/O

Viewing Process and Thread States

TotalView Users Guide: version 8.8 69

The following figure on the next page shows TotalView displaying process
state information in the Attach to process page. (See Figure 63.)

The Status of a process includes the process location, the process ID, and
the state of the process. (These characters are explained in “Seeing Attached
Process States” on page 70.)

If you need to attach to a process that is not yet being debugged, open the
File > New Program dialog box and select Attach to an existing process
from the left pulldown list. TotalView will then show all processes associ-
ated with your username. Notice that some of the processes will be dim
(drawn in a lighter font). This indicates either you cannot attach to the pro-
cess or you’re already attached to it.

Notice that the status bars in the Process Window also display status infor-
mation. (See Figure 64.)

CLI: dstatus and dptsets
When you use either of these commands, TotalView also displays
state information.

Figure 63: Root Window
Showing Process and
Thread Status

Figure 64: Process and Thread
Labels in the Process
Window

Viewing Process and Thread States

70 Chapter 4: Setting Up a Debugging Session

If the thread ID that TotalView assigns is the same as the operating system thread ID
your, TotalView only displays ID. If you are debugging an MPI program, TotalView dis-
plays the thread’s rank number.

Seeing Attached Process States

Seeing Unattached Process States

TotalView uses the letters shown in the following table to indicate process
and thread state. (These letters are in the Status column in the Root Win-
dow, as the figure in the previous section shows.)

The error state usually indicates that your program received a fatal signal,
such as SIGSEGV, SIGBUS, or SIGFPE, from the operating system. See “Han-
dling Signals” on page 71 for information on controlling how TotalView han-
dles signals that your program receives.

Seeing Unattached Process States

Seeing Attached Process States

TotalView derives the state information for a process displayed in the File >
New Program dialog box’s Attach to an existing process state from the
operating system. The state characters TotalView uses to summarize the
state of an unattached process do not necessarily match those used by the
operating system. The following table describes the state indicators that
TotalView displays:

State Code State Description
blank Exited or never created
B At breakpoint
E Error reason
H Held
K In kernel
L (cell only) Loose—Indicates slave SPU threads that are not held

and not currently bound to PPU threads
M Mixed
R Running
T Stopped reason
W At watchpoint

CLI: The CLI prints out a word indicating the state; for example, “break-
point.”

State Code State Description
I Idle
R Running
S Sleeping
T Stopped
Z Zombie (no apparent owner)

Handling Signals

TotalView Users Guide: version 8.8 71

Handling Signals

Thread > Continuation Signal Command

If your program contains a signal handler routine, you may need to adjust the
way TotalView handles signals. The following table shows how TotalView han-
dles UNIX signals if you do not tell it how to handle them:

TotalView uses the SIGTRAP and SIGSTOP signals internally. If a process receives either
of these signals, TotalView neither stops the process with an error nor passes the signal
back to your program. You cannot alter the way TotalView uses these signals.

On some systems, hardware registers affect how TotalView and your pro-
gram handle signals such as SIGFPE. For more information, see “Interpreting
the Status and Control Registers” on page 252 of this manual and the “Architec-
tures” chapter in the TotalView Reference Guide.

On an SGI computer, setting the TRAP_FPE environment variable to any value indi-
cates that your program traps underflow errors. If you set this variable, however, you
also need to use the controls in the File > Signals Dialog Box to indicate what
TotalView should do with SIGFPE errors. (In most cases, you set SIGFPE to Resend.)

You can change the signal handling mode using the File > Signals command.
(See Figure 65.)

The signal names and numbers that TotalView displays are platform-spe-
cific. That is, what you see in this box depends on the computer and oper-
ating system in which your program is executing.

You can change the default way in which TotalView handles a signal by set-
ting the TV::signal_handling_mode variable in a .tvdrc startup file. For more
information, see Chapter 4 of the “TotalView Reference Guide.”

Signals that TotalView Passes Back
to Your Program Signals that TotalView Treats as Errors
SIGHUP SIGIO SIGILL SIGPIPE
SIGINT SIGIO SIGTRAP SIGTERM
SIGQUIT SIGPROF SIGIOT SIGTSTP
SIGKILL SIGWINCH SIGEMT SIGTTIN
SIGALRM SIGLOST SIGFPE SIGTTOU
SIGURG SIGUSR1 SIGBUS SIGXCPU
SIGCONT SIGUSR2 SIGSEGV SIGXFSZ
SIGCHLD SIGSYS

CLI: dset TV::signal_handling_mode

Handling Signals

72 Chapter 4: Setting Up a Debugging Session

When your program receives a signal, TotalView stops all related processes. If
you don’t want this behavior, clear the Stop control group on error signal
check box on the Options Page of the File > Preferences Dialog Box.

When your program encounters an error signal, TotalView opens or raises
the Process Window. Clearing the Open process window on error signal
check box, also found on the Options Page in the File > Preferences Dialog
Box, tells TotalView not to open or raise windows.

If processes in a multi-process program encounter an error, TotalView only
opens a Process Window for the first process that encounters an error. (If it
did it for all of them, TotalView would quickly fill up your screen with Pro-
cess Windows.)

If you select the Open process window at breakpoint check box on the
File > Preferences Action Points Page, TotalView opens or raises the Process
Window when your program reaches a breakpoint.

Figure 65: File > Signals
Dialog Box

CLI: dset TV::warn_step_throw

CLI: dset TV::GUI::pop_on_error

CLI: dset TV::GUI::pop_at_breakpoint

Setting Search Paths

TotalView Users Guide: version 8.8 73

Make your changes by selecting one of the radio buttons described in the
following table.

Do not use Ignore for fatal signals such as SIGSEGV and SIGBUS. If you do, TotalView
can get caught in a signal/resignal loop with your program; the signal immediately
reoccurs because the failing instruction repeatedly re-executes.

Setting Search Paths

Starting TotalView

EXECUTABLE_PATH Variable

If your source code, executable, and object files reside in different directo-
ries, set search paths for these directories with the File > Search Path com-
mand. You do not need to use this command if these directories are
already named in your environment’s PATH variable.

These search paths apply to all processes that you’re debugging. (See
Figure 66 on page 74.)

TotalView searches the following directories in order:

1 The current working directory (.) and the directories you specify with the
File > Search Path command, in the exact order you enter them.

2 The directory name hint. This is the directory that is within the debugging
information generated by your compiler.

3 If you entered a full path name for the executable when you started
TotalView, TotalView searches this directory.

Button Description
Error Stops the process, places it in the error state, and displays an

error in the title bar of the Process Window. If you have also
selected the Stop control group on error signal check box,
TotalView also stops all related processes. Select this button
for severe error conditions, such as SIGSEGV and SIGBUS.

Stop Stops the process and places it in the stopped state. Select
this button if you want TotalView to handle this signal as it
would a SIGSTOP signal.

Resend Sends the signal back to the process. This setting lets you
test your program’s signal handling routines. TotalView sets
the SIGKILL and SIGHUP signals to Resend since most programs
have handlers to handle program termination.

Ignore Discards the signal and continues the process. The
process does not know that something raised a signal.

CLI: dset EXECUTABLE_PATH

Setting Search Paths

74 Chapter 4: Setting Up a Debugging Session

4 If your executable is a symbolic link, TotalView looks in the directory in
which your executable actually resides for the new file.
Since you can have multiple levels of symbolic links, TotalView continues
following links until it finds the actual file. After it finds the current exe-
cutable, it looks in its directory for your file. If the file isn’t there, TotalView
backs up the chain of links until either it finds the file or determines that
the file can’t be found.

5 The directories specified in your PATH environment variable.
6 The src directory within your TotalView installation directory.
The simplest way to enter a search path is select the EXECUTABLE_PATH
tab, then type an entry or press Insert and use the displayed dialog box to
find the directory.

When you enter directories into this dialog box, you must enter them in the
order you want them searched, and you must enter each on its own line.
You can enter directories in the following ways:

Type path names directly.
Cut and paste directory information.
Click the Insert button to display the Select Directory dialog box that lets
you browse through the file system, interactively selecting directories.
(See Figure 67 on page 75.)Here is the dialog box:

Figure 66: File > Search Path
Dialog Box

Setting Search Paths

TotalView Users Guide: version 8.8 75

The current working directory (.) in the File > Search Path Dialog Box is the
first directory listed in the window. TotalView interprets relative path names
as being relative to the current working directory.

If you remove the current working directory from this list, TotalView rein-
serts it at the top of the list.

After you change this list of directories, TotalView again searches for the
source file of the routine being displayed in the Process Window.

You can also specify search directories using the EXECUTABLE_PATH envi-
ronment variable.

TotalView search path is not usually passed to other processes. For exam-
ple, it does not affect the PATH of a starter process such as poe. Suppose
that “.” is in your TotalView path, but it is not in your PATH environment
variable. In addition, the executable named prog_name is listed in your
PWD environment variable. In this case, the following command works:

totalview prog_name

However, the following command does not:

totalview poe -a prog_name

You will find a complete description of how to use this dialog box in the help.

Figure 67: Select Directory Dialog
Box

Setting Startup Parameters

76 Chapter 4: Setting Up a Debugging Session

Setting Startup Parameters

After you load a program, you may want to change a program’s command-
line arguments and environment variables or change the way standard
input, output, and error. Do this using the Process > Startup Parameters
command. The displayed dialog box is nearly identical to that displayed
when you use the File > New Program command, differing in that the dia-
log box doesn’t have a Program tab.

For information on this dialog box’s tabs, see “Setting Command-line Argu-
ments and Environment Variables” on page 67 and “Altering Standard I/O” on
page 67.

If you are using the CLI, you can set default command line arguments by
setting the ARGS_DEFAULT variable.

Also, the drun and drerun commands let you reset stdin, stdout, and stderr.

Setting Preferences

File > Preferences

The File > Preferences command lets you tailor many TotalView behaviors.
This section contains an overview of these preferences. See the online
Help for detailed explanations.

Some settings, such as the prefixes and suffixes examined before loading
dynamic libraries, can differ between operating systems. If they can differ,
TotalView can store a unique value for each. TotalView does this transpar-
ently, which means that you only see an operating system’s values when
you are running TotalView on that operating system. For example, if you set
a server launch string on an SGI computer, it does not affect the value
stored for other systems. Generally, this occurs for server launch strings
and dynamic library paths.

Every preference has a variable that you can set using the CLI. These vari-
ables are described in the”Variables” chapter of the TotalView Reference Guide.

The rest of this section is an overview of these preferences.

Setting Preferences

TotalView Users Guide: version 8.8 77

Options This page contains check boxes that are either general in nature or that
influence different parts of the system. See the online Help for information
on using these check boxes. (See Figure 68.)

Action Points The commands on this page indicate whether TotalView should stop any-
thing else when it encounters an action point, the scope of the action
point, automatic saving and loading of action points, and if TotalView
should open a Process Window for the process encountering a breakpoint.

(See Figure 69.)

Figure 68: File > Preferences
Dialog Box: Options Page

Figure 69: File > Preferences
Dialog Box: Action Points
Page

Setting Preferences

78 Chapter 4: Setting Up a Debugging Session

Launch Strings The three areas of this page let you set the launch string that TotalView
uses when it launches the tvdsvr remote debugging server, the Visualizer,
and a source code editor. The values you initially see in the page are default
values that TotalView supplies. (See Figure 70.)

Bulk Launch The fields and commands on this page configure the TotalView bulk launch
system. (The bulk launch system launches groups of processes simulta-
neously.) See Chapter 4 for more information. (See Figure 71.)

Figure 70: File > Preferences
Dialog Box: Launch
Strings Page

Figure 71: File > Preferences
Dialog Box: Bulk Launch
Page

Setting Preferences

TotalView Users Guide: version 8.8 79

Dynamic Libraries When debugging large programs, you can sometimes increase perfor-
mance by telling TotalView that it should load and process debugging sym-
bols. This page lets you control which symbols are added to TotalView
when it loads a dynamic library, and how many of a library’s symbols are
read in. (See Figure 72.)

Parallel The options on this page let you control whether TotalView will stop or
continue executing when a process creates a thread or goes parallel. By
telling your program to stop, you can set breakpoints and examine code
before execution begins. (See Figure 73.)

Figure 72: File > Preferences
Dialog Box: Dynamic
Libraries Page

Figure 73: File > Preferences
Dialog Box: Parallel Page

Setting Preferences

80 Chapter 4: Setting Up a Debugging Session

Fonts The options on this page lets you specify the fonts TotalView uses in the
user interface and how TotalView displays your code. (See Figure 74.)

Formatting The options on this page control how TotalView displays your program’s
variables. (See Figure 75.)

Figure 74: File > Preferences
Dialog Box: Fonts Page

Figure 75: File > Preferences
Dialog Box: Formatting
Page

Setting Preferences

TotalView Users Guide: version 8.8 81

Pointer Dive The options on this page control how TotalView dereferences pointers and
how it casts pointers to arrays. (See Figure 76.)

ReplayEngine The options on this page control how ReplayEngine handles recorded his-
tory. (See Figure 77.)

The Maximum history size option sets the size in megabytes for Replay-
Engine’s history buffer. The default value, Unlimited, means ReplayEngine
will use as much memory as is available to save recorded history. You can

Figure 76: File > Preferences
Dialog Box: Pointer Dive
Page

Figure 77: File > Preferences
Dialog Box:
ReplayEngine

Setting Preferences

82 Chapter 4: Setting Up a Debugging Session

enter a new value into the text field or select from a drop-down list, as seen
in Figure 78.

The second option on the ReplayEngine preference page defines the tool’s
behavior when the history buffer is full. By default, the oldest history will be
discarded so that recording can continue. You can change that so that the
recording process will simply stop when the buffer is full.

Setting Preferences, Options, and X Resources

Setting Preferences

TotalView Variables

In most cases, preferences are the best way to set many features and char-
acteristics. In some cases, you need have more control. When these situa-
tions occur, you can the preferences and other TotalView attributes using
variables and command-line options.

Older versions of TotalView did not have a preference system. Instead, you
needed to set values in your .Xdefaults file or using a command-line
option. For example, setting totalview*autoLoadBreakpoints to true tells
TotalView to automatically load an executable’s breakpoint file when it
loads an executable. Because you can also set this option as a preference
and set it using the CLI dset command, this X resource has been deprecated.

Deprecated means that while the feature still exists in the current release, there’s no
guarantee that it will continue to work at a later time. We have deprecated all “total-
view” X default options. TotalView still fully supports Visualizer resources. Information
on these Visualizer settings is at
http://www.totalviewtech.com/Documentation/xresources/XResources.pdf.

Figure 78: File > Preferences
Dialog Box:
ReplayEngine History
Option

Setting Preferences

TotalView Users Guide: version 8.8 83

Similarly, documentation for earlier releases told you how to use a com-
mand-line option to tell TotalView to automatically load breakpoints, and
there were two different command-line options to perform this action.
While these methods still work, they are also deprecated.

In some cases, you might set a state for one session or you might override
one of your preferences. (A preference indicates a behavior that you want to
occur in all of your TotalView sessions.) This is the function of the com-
mand-line options described in “TotalView Command Syntax” in the TotalView
Reference Guide.

For example, you can use the –bg command-line option to set the back-
ground color for debugger windows in the session just being invoked.
TotalView does not remember changes to its default behavior that you
make using command-line options. You have to set them again when you
start a new session.

Setting Preferences

84 Chapter 4: Setting Up a Debugging Session

TotalView Users Guide: version 8.8 85

c
h
a
p
t
e
r

Setting Up Remote
Debugging Sessions

5

This chapter explains how to set up TotalView remote debugging
sessions.

This chapter contains the following sections:

“Setting Up and Starting the TotalView Server” on page 85
“Starting the TotalView Server Manually” on page 91
“Disabling Autolaunch” on page 96

You cannot debug remote processes using TotalView Individual.

Setting Up and Starting the
TotalView Server

Setting Single-Process Server Launch Options

Setting Bulk Launch Window Options

Starting the TotalView Server Manually

tvdsvr

Debugging a remote process with TotalView is only slightly different than
debugging a native process. The following are the primary differences:

TotalView needs to work with a process that will be running on remote
computers. This remote process, which TotalView usually launches, is
called the tvdsvr.
TotalView performance depends on your network’s performance. If the
network is overloaded, debugging can be slow.

TotalView can automatically launch tvdsvr in one of the following ways:

Setting Up and Starting the TotalView Server

86 Chapter 5: Setting Up Remote Debugging Sessions

It can independently launch a tvdsvr on each remote host. This is called
single-process server launch.
It can launch all remote processes at the same time. This is called bulk
server launch.

Because TotalView can automatically launch tvdsvr, you usually do not need
to do anything special for programs that launch remote processes. When
using TotalView, it doesn’t matter whether a process is local or remote.

Some parallel programs—MPI programs, for example—make use of a starter program
such as poe or mpirun. This program creates all the parallel jobs on your nodes.
TotalView lets you start these programs in two ways. One requires that the starter pro-
gram be under TotalView control, and the other does not. In the first case, you will enter
the name of the starter program on the command line. In the other, you will enter pro-
gram information into the File > New Program or Process > Startup Parameter dialog
boxes. Programs started using these dialog boxes do not use the information you set for
single-process and bulk server launching.

In general, when you are debugging programs remotely, the architecture of
the remote machine must be compatible with that of the machine upon
which you are running TotalView. For example, you cannot perform remote
debugging on a 64-bit Linux system if you launch TotalView from a 32-bit
Linux system. In addition, the operating systems must also be compatible.

However, TotalView supports several forms of heterogeneous debugging,
where the operating system and/or architecture differ. For example, from a
Linux x86-64 session you can debug remote processes on Linux Cell.

This table shows the supported combinations:

You must install TotalView for each host and target platform combination
being debugged.

The path to TotalView must be identical on the local and all remote systems. If they are
not, TotalView will not find the tvdsvr program.

Host System Target System

Linux x86-64 Linux x86
Linux x86-64
Linux Power 32
Linux Power 64 / Cell
SiCortex
Cray XT

Linux x86 Linux x86
Linux Power 32
Linux Power 64 / Cell

Linux Power 64
(including Linux Cell)

Linux Power 32
Linux Power 64 / Cell
Blue Gene

SiCortex Linux x86-64 Linux MIPS 64

Setting Up and Starting the TotalView Server

TotalView Users Guide: version 8.8 87

TotalView assumes that you will launch tvdsvr using rsh. If rsh is unavail-
able, you should set the TVDSVRLAUNCHCMD environment variable to the
command that you use to remotely access the remote system. In most
cases, this will be ssh.

If the default single-process server launch procedure meets your needs and you’re not
experiencing any problems accessing remote processes from TotalView, you probably do
not need the information in this chapter. If you do experience a problem launching the
server, check that the tvdsvr process is in your path.

This section contains the following information:

“Setting Single-Process Server Launch Options” on page 87
“Setting Bulk Launch Window Options” on page 89
“Starting the TotalView Server Manually” on page 91
“Using the Single-Process Server Launch Command” on page 92
“Bulk Server Launch Setting on an SGI Computer” on page 93
“Setting Bulk Server Launch on an HP Alpha Computer” on page 95
“Setting Bulk Server Launch on a Cray XT Series Computer” on page 95
“Setting Bulk Server Launch on an IBM RS/6000 AIX Computer” on page 95
“Disabling Autolaunch” on page 96
“Changing the Remote Shell Command” on page 97
“Changing Arguments” on page 97
“Autolaunching Sequence” on page 98

Setting Single-Process Server Launch Options

tvdsvr

Setting Bulk Launch Window Options

Starting TotalView

The Enable single debug server launch check box in the Launch Strings Page
of the File > Preferences Dialog Box lets you disable autolaunching, change
the command that TotalView uses when it launches remote servers, and
alter the amount of time TotalView waits when establishing connections to
a tvdsvr process. (The Enable Visualizer launch and Source Code Editor
areas are not used when setting launch options.) See Figure 79.

Setting Up and Starting the TotalView Server

88 Chapter 5: Setting Up Remote Debugging Sessions

Enable single debug server launch
If you select this check box, TotalView independently
launches the tvdsvr on each remote system.

Even if you have enabled bulk server launch, you probably also
want to enable this option. TotalView uses this launch string after
you start TotalView and when you name a host in the File >
New Program Dialog Box or have used the –remote com-
mand-line option. You only want to disable single server launch
when it can’t work.

Command Enter the command that TotalView will use when it in-
dependently launches tvdsvr. For information on this
command and its options, see “Using the Single-Process
Server Launch Command” on page 92.

Timeout After TotalView automatically launches the tvdsvr pro-
cess, it waits 30 seconds for it to respond. If the con-
nection isn’t made in this time, TotalView times out.
You can change the length of time by entering a value
from 1 to 3600 seconds (1 hour).

If you notice that TotalView fails to launch tvdsvr (as
shown in the xterm window from which you started

Figure 79: File > Preferences:
Launch Strings Page

CLI: dset TV::server_launch_enabled

CLI: dset TV::server_launch_string

CLI: dset TV::server_launch_timeout

Setting Up and Starting the TotalView Server

TotalView Users Guide: version 8.8 89

TotalView) before the timeout expires, click Yes in the
Question Dialog Box that appears.

Defaults If you make a mistake or decide you want to go back to
default settings, click the Defaults button.

Clicking the Defaults button also discards all changes
you made using a CLI variable. TotalView doesn’t imme-
diately change settings after you click the Defaults but-
ton; instead, it waits until you click the OK button.

Setting Bulk Launch Window Options

tvdsvr

Setting Single-Process Server Launch Options

Starting TotalView

The fields in the File > Preferences Bulk Launch Page let you change the
bulk launch command, disable bulk launch, and alter connection timeouts
that TotalView uses when it launches tvdsvr programs. (See Figure 80.)

Enable debug server bulk launch
If you select this check box, TotalView uses its bulk
launch procedure when launching the tvdsvr. By de-
fault, bulk launch is disabled; that is, TotalView uses its
single-server launch procedure.

Command If you enable bulk launch, TotalView uses this com-
mand to launch tvdsvr. For information on this com-
mand and its options, see “Bulk Server Launch Setting on

CLI: dset TV::bulk_launch_enabled

Figure 80: File > Preferences:
Bulk Launch Page

Setting Up and Starting the TotalView Server

90 Chapter 5: Setting Up Remote Debugging Sessions

an SGI Computer” on page 93 and “Setting Bulk Server
Launch on an IBM RS/6000 AIX Computer” on page 95.

Temp File 1 Prototype
Temp File 2 Prototype

Both of these tab pages have three fields. These fields
let you specify the contents of temporary files that the
bulk launch operation uses. For information on these
fields, see “TotalView Debugger Server (tvdsvr) Command
Syntax” in the TotalView Reference Guide.

Connection Timeout (in seconds)
After TotalView launches tvdsvr processes, it waits 20
seconds for responses from the process (the Base time)
plus 10 seconds for each server process being
launched. If a connection is not made in this time,
TotalView times out.

A Base timeout value can range from 1 to 3600 seconds
(1 hour). The incremental Plus value is from 1 to 360
seconds (6 minutes). See the online Help for informa-
tion on setting these values.

If you notice that TotalView fails to launch tvdsvr (as
shown in the xterm window from which you started
TotalView) before the timeout expires, select Yes in the
Question Dialog Box that appears.

Defaults If you make a mistake or decide you want to go back to
TotalView’s default settings, click the Defaults button.

Clicking Defaults also throws away any changes you
made using a CLI variable. TotalView doesn’t immedi-
ately change settings after you click the Defaults but-
ton; instead, it waits until you click the OK button.

CLI: dset TV::bulk_launch_string

CLI: dset TV::bulk_launch_tmpfile1_header_line
dset TV::bulk_launch_tmpfile1_host_lines
dset TV::bulk_launch_tmpfile1_trailer_line
dset TV::bulk_launch_tmpfile2_header_line
dset TV::bulk_launch_tmpfile2_host_lines
dset TV::bulk_launch_tmpfile2_trailer_line

CLI: dset TV::bulk_launch_base_timeout
dset TV::bulk_launch_incr_timeout

Starting the TotalView Server Manually

TotalView Users Guide: version 8.8 91

Starting the TotalView Server
Manually

Setting Single-Process Server Launch Options

Setting Bulk Launch Window Options

Starting TotalView

tvdsvr

If TotalView can’t automatically launch tvdsvr, you can start it manually.

You cannot debug remote processes using TotalView Individual.

If you use a “hostname:portnumber” qualifier when opening a remote process,
TotalView does not launch a debugger server.

Here are the steps for manually starting tvdsvr:

1 Make sure that both bulk launch and single server launch are disabled. To
disable bulk launch, click the Bulk Launch Tab in the File > Preferences
Dialog Box. (You can select this command from the Root Window or the
Process Window.)

2 Clear the Enable debug server bulk launch check box in the Bulk Launch
Tab to disable autolaunching and then select OK.

3 Select the Server Launch Tab and clear the Enable single debug server
launch check box.

4 Log in to the remote computer and start tvdsvr:
tvdsvr –server
If you don’t (or can’t) use the default port number (4142), you will need to
use the –port or –search_port options. For details, see “TotalView Debugger
Server (tvdsvr) Command Syntax” in the TotalView Reference Guide.
After printing the port number and the assigned password, the server
begins listening for connections. Be sure to remember the password—
you need to enter it in step 5.

Using the –server option is not secure, other users could connect to your tvdsvr pro-
cess and use your UNIX UID. Consequently, this command-line option must be
explicitly enabled. (Your system administrator usually does this.) For details, see
–server in the “TotalView Command Syntax” chapter of the TotalView Reference
Guide.

CLI: dset TV::bulk_launch_enabled

CLI: dset TV::server_launch_enabled

Starting the TotalView Server Manually

92 Chapter 5: Setting Up Remote Debugging Sessions

5 From the Root Window, select the File > New Program command. Type the
program’s name in the Program field and the hostname:portnumber in the on
host field and then select OK.

6 TotalView tries to connect to tvdsvr.
7 When TotalView prompts you for the password, enter the password that

tvdsvr displayed in step 4.

The following figure summarizes the steps for starting tvdsvr manually.

Using the Single-Process Server Launch Command

Setting Single-Process Server Launch Options

Setting Bulk Launch Window Options

tvdsvr

The following is the default command string that TotalView uses when it
automatically launches TotalView server for a single process:

%C %R –n "%B/tvdsvr –working_directory %D –callback %L \
–set_pw %P –verbosity %V %F"

where:

%C Expands to the name of the server launch command to
use, which is the value of TV::launch_command. On
most platforms, this is rsh. On HP computers, it is
remsh. On SiCortex, it is ssh - x. If the
TVDSVRLAUNCHCMD environment variable exists,
TV::launch_command is initialized to its value.

%R Expands to the host name of the remote computer that
you specified in the File > New Program or dload com-
mands.

%B Expands to the bin directory in which tvdsvr is in-
stalled.

CLI: dload executable –r hostname

Figure 81: Manual Launching
of Debugger Server

 Makes connection
 Listens

Network

2

tvdsvr

1
TotalView

Remote
Executable

Starting the TotalView Server Manually

TotalView Users Guide: version 8.8 93

–n Tells the remote shell to read standard input from
/dev/null; that is, the process immediately receives an
EOF (End-Of-File) signal.

–working_directory %D
Makes %D the directory to which TotalView connects.
%D expands to the absolute path name of the direc-
tory.

When you use this option, the host computer and the
target computer must mount identical file systems. That
is, the path name of the directory to which TotalView
connects must be identical on host and target comput-
ers.

After changing to this directory, the shell invokes the
tvdsvr command.

You must make sure that the tvdsvr directory is in your
path on the remote computer.

–callback %L Establishes a connection from tvdsvr to TotalView. %L
expands to the host name and TCP/IP port number
(hostname:portnumber) on which TotalView is listening for
connections from tvdsvr.

–set_pw %P Sets a 64-bit password. TotalView must supply this
password when tvdsvr establishes a connection with it.
TotalView expands %P to the password that it automat-
ically generates. For more information on this pass-
word, see “TotalView Debugger Server (tvdsvr) Command
Syntax” in the TotalView Reference Guide.

–verbosity %V Sets the verbosity level of the tvdsvr. %V expands to
the current verbosity setting. For information on ver-
bosity, see the “Variables” chapter within the TotalView
Reference Guide.

%F Contains the tracer configuration flags that need to be
sent to tvdsvr processes. These are system-specific
startup options that the tvdsvr process needs.

You can also use the %H option with this command. See “Bulk Server Launch
Setting on an SGI Computer” on page 93 for more information.

For information on the complete syntax of the tvdsvr command, see
“TotalView Debugger Server (tvdsvr) Command Syntax” in the TotalView Reference
Guide.

Bulk Server Launch Setting on an SGI Computer

Setting Single-Process Server Launch Options

Setting Bulk Launch Window Options

tvdsvr

Starting the TotalView Server Manually

94 Chapter 5: Setting Up Remote Debugging Sessions

On SGI MIPS and SGI ICE computers, the bulk server launch string is as follows:

array tvdsvr –working_directory %D –callback_host %H \
–callback_ports %L –set_pws %P –verbosity %V %F

where:

–working_directory %D
Makes %D the directory to which TotalView connects.
TotalView expands %D to this directory’s absolute path
name.

When you use this option, the host computer and the
target computer must mount identical file systems. That
is, the path name of the directory to which TotalView
connects must be identical on the host and target com-
puters.

After performing this operation, tvdsvr starts executing.

–callback_host %H
Names the host upon which TotalView makes this call-
back. TotalView expands %H to the host name of the
computer on which TotalView is running.

–callback_ports %L
Names the ports on the host computers that TotalView
uses for callbacks. TotalView expands %L to a comma-
separated list of host names and TCP/IP port numbers
(hostname:portnumber,hostname:portnumber...) on which
TotalView is listening for connections.

–set_pws %P Sets 64-bit passwords. TotalView must supply these
passwords when tvdsvr establishes the connection with
it. %P expands to a comma-separated list of 64-bit
passwords that TotalView automatically generates. For
more information, see “TotalView Debugger Server (tvdsvr)
Command Syntax” in the TotalView Reference Guide.

–verbosity %V Sets the tvdsvr verbosity level. TotalView expands %V
to the current verbosity setting.For information on ver-
bosity, see the “Variables” chapter within the TotalView
Reference Guide.

You must enable the use of the array command by tvdsvr by adding the fol-
lowing information to the /usr/lib/array/arrayd.conf file:

#
Command that allows invocation of the TotalView
Debugger server when performing a Bulk Server Launch.
#
command tvdsvr

invoke /opt/totalview/bin/tvdsvr %ALLARGS
user %USER
group %GROUP
project %PROJECT

If your code is not in /opt/totalview/bin, you will need to change this infor-
mation. For information on the syntax of the tvdsvr command, see

Starting the TotalView Server Manually

TotalView Users Guide: version 8.8 95

“TotalView Debugger Server (tvdsvr) Command Syntax” in the TotalView Reference
Guide.

Setting Bulk Server Launch on an HP Alpha Computer

Setting Single-Process Server Launch Options

Setting Bulk Launch Window Options

tvdsvr

The following is the bulk launch string on an HP Alpha computer:

prun –T %Z %B/tvdsvr –callback_host %H \
–callback_ports %L –set_pws %P \
–verbosity %V –working_directory %D

Information on the options and expansion symbols is in the “TotalView Debug-
ger Server (tvdsvr) Syntax” chapter of the TotalView Reference Guide.

Setting Bulk Server Launch on a Cray XT Series
Computer

The following is the bulk server launch string for Cray XT series computers:

svrlaunch %B/tvdsvrmain%K -verbosity %V %F %H \
%t1 %I %K

where the options unique to this command are:

%B The bin directory where tvdsvr resides.

%K The number of servers that TotalView launches.

–verbosity %V Sets the verbosity level of the tvdsvr. %V expands to
the current verbosity setting. For information on ver-
bosity, see the “Variables” chapter within the TotalView
Reference Guide.

%F
Contains the “tracer configuration flags” that need to
be sent to tvdsvr processes. These are system-specific
startup options that the tvdsvr process needs.

%H Expands to the host name of the machine upon which
TotalView is running.

%t1 A temporary file created by TotalView that contains a
list of the hosts on which tvdsvr runs. This is the infor-
mation you enter in the Temp File 1 Prototype field on
the Bulk Launch Page.

%I Expands to the pid of the MPI starter process. For ex-
ample, it can contain mpirun, aprun, etc. It can also be
the process to which you manually attach. If no pid is
available, %I expands to 0.

Setting Bulk Server Launch on an IBM RS/6000 AIX
Computer

Setting Single-Process Server Launch Options

Disabling Autolaunch

96 Chapter 5: Setting Up Remote Debugging Sessions

Setting Bulk Launch Window Options

tvdsvr

The following is the bulk server launch string on an IBM RS/6000 AIX com-
puter:

%C %H –n “poe –pgmmodel mpmd –resd no –tasks_per_node 1\
-procs %N –hostfile %t1 –cmdfile %t2 %F”

where the options unique to this command are:

%N The number of servers that TotalView launches.

%t1 A temporary file created by TotalView that contains a
list of the hosts on which tvdsvr runs. This is the infor-
mation you enter in the Temp File 1 Prototype field on
the Bulk Launch Page.

TotalView generates this information by expanding the
%R symbol. This is the information you enter in the
Temp File 2 Prototype field on the Bulk Launch Page.

%t2 A file that contains the commands to start the tvdsvr
processes on each computer. TotalView creates these
lines by expanding the following template:

tvdsvr –working_directory %D \
–callback %L –set_pw %P \
–verbosity %V

Information on the options and expansion symbols is in the “TotalView Debug-
ger Server (tvdsvr) Syntax” chapter of the TotalView Reference Guide.

Disabling Autolaunch

Setting Up and Starting the TotalView Server

Setting Single-Process Server Launch Options

Setting Bulk Launch Window Options

If after changing autolaunching options, TotalView still can’t automatically
start tvdsvr, you must disable autolaunching and start tvdsvr manually.
Before trying to manually start the server, you must clear the Enable single
debug server launch check box on the Launch Strings Page of the File >
Preferences Dialog Box.

You can use the procedure described in “Setting Up and Starting the TotalView
Server” on page 85 to get the program started. You will also need to enter a
host name and port number in the bottom section of the File > New
Program Dialog Box. This disables autolaunching for the current connection.

CLI: dset TV::server_launch_enabled

Disabling Autolaunch

TotalView Users Guide: version 8.8 97

If you disable autolaunching, you must start tvdsvr before you load a remote execut-
able or attach to a remote process.

Changing the Remote Shell Command

Setting Single-Process Server Launch Options

Setting Bulk Launch Window Options

tvdsvr

Some environments require you to create your own autolaunching com-
mand. You might do this, for example, if your remote shell command
doesn’t provide the security that your site requires.

If you create your own autolaunching command, you must use the tvdsvr –
callback and –set_pw command-line options.

If you’re not sure whether rsh (or remsh on HP computers) works at your
site, try typing “rsh hostname” (or “remsh hostname”) from an xterm window,
where hostname is the name of the host on which you want to invoke the
remote process. If the process doesn’t just run and instead this command
prompts you for a password, you must add the host name of the host com-
puter to your .rhosts file on the target computer.

For example, you can use the following combination of the echo and telnet
commands:

echo %D %L %P %V; telnet %R

After telnet establishes a connection to the remote host, you can use the
cd and tvdsvr commands directly, using the values of %D, %L, %P, and %V
that were displayed by the echo command; for example:

cd directory
tvdsvr –callback hostname:portnumber –set_pw password

If your computer doesn’t have a command for invoking a remote process,
TotalView can’t autolaunch the tvdsvr and you must disable both single
server and bulk server launches.

For information on the rsh and remsh commands, see the manual page
supplied with your operating system.

Changing Arguments

Setting Single-Process Server Launch Options

Setting Bulk Launch Window Options

tvdsvr

You can also change the command-line arguments passed to rsh (or what-
ever command you use to invoke the remote process).

For example, if the host computer doesn’t mount the same file systems as
your target computer, tvdsvr might need to use a different path to access
the executable being debugged. If this is the case, you can change %D to
the directory used on the target computer.

Debugging Over a Serial Line

98 Chapter 5: Setting Up Remote Debugging Sessions

If the remote executable reads from standard input, you cannot use the –n
option with your remote shell command because the remote executable
receives an EOF immediately on standard input. If you omit the –n com-
mand-line option, the remote executable reads standard input from the
xterm in which you started TotalView. This means that you should invoke
tvdsvr from another xterm window if your remote program reads from stan-
dard input. The following is an example:

%C %R "xterm –display hostname:0 –e tvdsvr \
–callback %L -working_directory %D –set_pw %P \
–verbosity %V"

Each time TotalView launches tvdsvr, a new xterm appears on your screen
to handle standard input and output for the remote program.

Autolaunching Sequence

Setting Single-Process Server Launch Options

Setting Bulk Launch Window Options

tvdsvr

This section describes the sequence of actions involved in autolaunching.
You can skip this section if you aren’t having any problems or if you aren’t
curious.

1 With the File > New Program or dload commands, you specify the host
name of the computer on which you want to debug a remote process, as
described in “Setting Up and Starting the TotalView Server” on page 85.

2 TotalView begins listening for incoming connections.
3 TotalView launches the tvdsvr process with the server launch command.

(See “Using the Single-Process Server Launch Command” on page 92 for more
information.)

4 The tvdsvr process starts on the remote computer.
5 The tvdsvr process establishes a connection with TotalView.

The following figure summarizes these actions if your program is launching
one server. The numbers within this figure refer to the numbers in the pre-
ceding procedure.

If you have more than one server process, the following figure shows what
your environment might look like:

Debugging Over a Serial Line

Setting Single-Process Server Launch Options

Setting Bulk Launch Window Options

tvdsvr

Debugging Over a Serial Line

TotalView Users Guide: version 8.8 99

TotalView lets you debug programs over a serial line as well as TCP/IP sock-
ets. However, if a network connection exists, you probably want to use it to
improve performance.

You need two connections to the target computer: one for the console and
the other for TotalView. Do not try to use one serial line because TotalView
cannot share a serial line with the console.

The following figure illustrates a TotalView session using a serial line. In this
example, TotalView is communicating over a dedicated serial line with a
tvdsvr running on the target host. A VT100 terminal is connected to the tar-
get host’s console line, which lets you type commands on the target host.
(See Figure 84.)

This section contains the following topics:

“Starting the TotalView Debugger Server” on page 100
“Using the New Program Window” on page 100

Figure 82: Launching tvdsvr

Figure 83: Multiple tvdsvr
Processes

Network

2

5

3

4
tvdsvr

TotalView

Remote
Executable

Listens
Invokes commands
tvdsvr starts
Makes connection

Debugging Over a Serial Line

100 Chapter 5: Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server

Setting Single-Process Server Launch Options

Setting Bulk Launch Window Options

tvdsvr

To start a debugging session over a serial line from the command line, you
must first start the tvdsvr.

Using the console connected to the target computer, start tvdsvr and enter
the name of the serial port device on the target computer. Use the follow-
ing syntax:

tvdsvr –serial device[:baud=num]

where:

device The name of the serial line device.

num The serial line’s baud rate. If you omit the baud rate,
TotalView uses a default value of 38400.

For example:

tvdsvr –serial /dev/com1:baud=38400

After it starts, tvdsvr waits for TotalView to establish a connection.

Using the New Program Window

Setting Single-Process Server Launch Options

Setting Bulk Launch Window Options

The following procedure starts a debugging session over a serial line when
you’re already in TotalView:

1 Start the tvdsvr (see “Starting the TotalView Debugger Server” on page 100).
2 Select the File > New Program command. In the pulldown list on the right,

select Add new host. TotalView displays the dialog box shown in
Figure 85the following figure.

3 Type the name of the program in the Program field.
4 Type the name of the serial line device in the Serial Line field. For example,

you might type /dev/ttyS0:serial, where /dev/ttyS0 is the device file repre-
senting the serial port.
Select OK.

Figure 84: Debugging Session
Over a Serial Line

Network

TotalView

tvdsvr

VT100
Remote

ExecutableConsole
Line

Serial Line

Debugging Over a Serial Line

TotalView Users Guide: version 8.8 101

Figure 85: Adding
New Host

Debugging Over a Serial Line

102 Chapter 5: Setting Up Remote Debugging Sessions

TotalView Users Guide: version 8.8 103

c
h
a
p
t
e
r

Setting Up MPI
Debugging Sessions

6

This chapter explains how to set up TotalView MPI debugging ses-
sions. You will find information on starting up other kinds of parallel
programs in Chapter 7, “Setting Up Parallel Debugging Sessions,” on
page 137.

If you are using TotalView Individual, all of your MPI processes must execute on the
computer on which you installed TotalView. In addition, TotalView Individual limits you
to no more than 16 processes and threads.

This chapter describes the following MPI systems:

“Debugging MPI Programs” on page 104
“Debugging MPICH Applications” on page 106
“Debugging MPICH2 Applications” on page 110
“Debugging Cray MPI Applications” on page 118
“Debugging HP Tru64 Alpha MPI Applications” on page 118
“Debugging HP MPI Applications” on page 119
“Debugging IBM MPI Parallel Environment (PE) Applications” on
page 121
“Debugging IBM Blue Gene Applications” on page 124
“Debugging LAM/MPI Applications” on page 125
“Debugging QSW RMS Applications” on page 126
“Debugging SiCortex MPI Applications” on page 127
“Debugging SGI MPI Applications” on page 127
“Debugging Sun MPI Applications” on page 129

This chapter also describes debugger features that you can use with
most parallel models:

If you’re using a messaging system, TotalView displays this infor-
mation visually as a message queue graph and textually in a Mes-
sage Queue Window. For more information, see “Displaying the
Message Queue Graph Window” on page 113 and “Displaying the Mes-
sage Queue” on page 115.

Debugging MPI Programs

104 Chapter 6: Setting Up MPI Debugging Sessions

TotalView lets you decide which process you want it to attach to.
See “Attaching to Processes” on page 130.
See “Debugging Parallel Applications Tips” on page 130 for hints on
how to approach debugging parallel programs.

Debugging MPI Programs

Starting MPI Programs

MPI programs use a starter program such as mpirun to start your program.
TotalView lets you start these MPI programs in two ways. One requires that
the starter program be under TotalView control, and the other does not. In
the first case, you will enter the name of the starter program on the com-
mand line. In the other, you will enter program information into the File >
New Program or Process > Startup Parameter dialog boxes.

Programs started using these dialog boxes do not use the information you
set for single-process and bulk server launching. In addition, you cannot
use the Attach Subset command when entering information using these
dialog boxes.

Starting MPI programs using the dialog boxes is the recommended method.
This method is described in the next section. Starting using a started pro-
gram is described in various places throughout this chapter.

Starting MPI Programs Using File > New Program

In many cases, the way in which you invoke an MPI program within
TotalView control differs little from discipline to discipline. If you invoke
TotalView from the command line without an argument, TotalView displays
its File > New Program dialog box. (See Figure 86 on page 105.)

After entering the program’s name (Start a new process should be selected
by default), select the Parallel tab. (See Figure 87 on page 105.)

You can now select the Parallel system, the number of Tasks, and Nodes. If
there are additional arguments that need to be sent to the starter process,
type them within the Additional starter arguments area. These arguments
are ones that are sent to a starter process such as mpirun or poe. They are
not arguments sent to your program.

If you need to add and initialize environment variables and command-line
options, select the Arguments tab and enter them.

In most cases, TotalView will remember what you type between invocations
of TotalView. For example, suppose you were debugging a program called

Debugging MPI Programs

TotalView Users Guide: version 8.6 105

my_foo and set it up using these controls. The next time you start
TotalView, you can use the following command:

totalview my_foo

TotalView will remember what you entered so there is no need to respecify
these options.

Figure 86: File > New
Program Dialog
Box

Figure 87: File > New
Program Dialog
Box: Parallel Tab

Debugging MPICH Applications

106 Chapter 6: Setting Up MPI Debugging Sessions

Debugging MPICH Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 104.

To debug Message Passing Interface/Chameleon Standard (MPICH) applica-
tions, you must use MPICH version 1.2.3 or later on a homogeneous collec-
tion of computers. If you need a copy of MPICH, you can obtain it at no
cost from Argonne National Laboratory at www.mcs.anl.gov/mpi. (We
strongly urge that you use a later version of MPICH. The TotalView Platforms
and Systems Requirements document has information on versions that work
with TotalView.)

The MPICH library should use the ch_p4, ch_p4mpd, ch_shmem,
ch_lfshmem, or ch_mpl devices.

For networks of workstations, the default MPICH library is ch_p4.
For shared-memory SMP computers, use ch_shmem.
On an IBM SP computer, use the ch_mpl device.

The MPICH source distribution includes all of these devices. Choose the
device that best fits your environment when you configure and build MPICH.

When configuring MPICH, you must ensure that the MPICH library maintains all of
the information that TotalView requires. This means that you must use the
–enable-debug option with the MPICH configure command. (Versions earlier than
1.2 used the --debug option.) In addition, the TotalView Release Notes contains infor-
mation on patching your MPICH version 1.2.3 distribution.

For more information, see:

“Starting TotalView on an MPICH Job” on page 106
“Attaching to an MPICH Job” on page 108
“Using MPICH P4 procgroup Files” on page 109

Starting TotalView on an MPICH Job

Before you can bring an MPICH job under TotalView’s control, both
TotalView and the tvdsvr must be in your path. You can do this in a login or
shell startup script.

For version 1.1.2, the following command-line syntax starts a job under
TotalView control:

mpirun [MPICH-arguments] –tv program [program-arguments]

For example:

mpirun –np 4 –tv sendrecv

Debugging MPICH Applications

TotalView Users Guide: version 8.6 107

The MPICH mpirun command obtains information from the TOTALVIEW
environment variable and then uses this information when it starts the first
process in the parallel job.

For Version 1.2.4, the syntax changes to the following:

mpirun –dbg=totalview [other_mpich-args] program [program-args]

For example:

mpirun –dbg=totalview –np 4 sendrecv

In this case, mpirun obtains the information it needs from the –dbg com-
mand-line option.

In other contexts, setting this environment variable means that you can
use different versions of TotalView or pass command-line options to
TotalView.

For example, the following is the C shell command that sets the TOTALVIEW
environment variable so that mpirun passes the –no_stop_all option to
TotalView:

setenv TOTALVIEW "totalview –no_stop_all"

TotalView begins by starting the first process of your job, the master process,
under its control. You can then set breakpoints and begin debugging your
code.

On the IBM SP computer with the ch_mpl device, the mpirun command
uses the poe command to start an MPI job. While you still must use the
MPICH mpirun (and its –tv option) command to start an MPICH job, the
way you start MPICH differs. For details on using TotalView with poe, see
“Starting TotalView on a PE Program” on page 122.

Starting TotalView using the ch_p4mpd device is similar to starting
TotalView using poe on an IBM computer or other methods you might use
on Sun and HP platforms. In general, you start TotalView using the
totalview command, with the following syntax;

totalview mpirun [totalview_args] –a [mpich-args] program [program-args]

As your program executes, TotalView automatically acquires the processes
that are part of your parallel job as your program creates them. Before
TotalView begins to acquire them, it asks if you want to stop the spawned
processes. If you click Yes, you can stop processes as they are initialized.
This lets you check their states or set breakpoints that are unique to the
process. TotalView automatically copies breakpoints from the master pro-
cess to the slave processes as it acquires them. Consequently, you don’t
have to stop them just to set these breakpoints.

CLI: totalviewcli mpirun [totalview_args] \
–a [mpich-args] program [program-args]

Debugging MPICH Applications

108 Chapter 6: Setting Up MPI Debugging Sessions

If you’re using the GUI, TotalView updates the Root Window to show these
newly acquired processes. For more information, see “Attaching to Processes”
on page 130.

Attaching to an MPICH Job

TotalView lets you attach to an MPICH application even if it was not started
under TotalView control.

To attach to an MPICH application:

1 Start TotalView.
Select Attach to an existing process from within the File > New Program
dialog box. TotalView updates the dialog box so that it displays the pro-
cesses that are not yet owned.

2 Attach to the first MPICH process in your workstation cluster by diving
into it.

3 On an IBM SP with the ch_mpi device, attach to the poe process that
started your job. For details, see “Starting TotalView on a PE Program” on
page 122. Figure 88 shows this information.

Normally, the first MPICH process is the highest process with the correct
program name in the process list. Other instances of the same executable
can be:

The p4 listener processes if MPICH was configured with ch_p4.
Additional slave processes if MPICH was configured with ch_shmem or
ch_lfshmem.
Additional slave processes if MPICH was configured with ch_p4 and has
a file that places multiple processes on the same computer.

CLI: dattach executable pid

Figure 88: File > New
Program: Attach to
an Existing Process

Debugging MPICH Applications

TotalView Users Guide: version 8.6 109

4 After you attach to your program’s processes, TotalView asks if you also
want to attach to slave MPICH processes. If you do, press Return or
choose Yes. If you do not, choose No.
If you choose Yes, TotalView starts the server processes and acquires all
MPICH processes.
As an alternative, you can use the Group > Attach Subset command to
predefine what TotalView should do. For more information, see “Attaching
to Processes” on page 130.

If you are using TotalView Individual, all of your MPI processes must execute on the
computer on which you installed TotalView.

In some situations, the processes you expect to see might not exist (for
example, they may crash or exit). TotalView acquires all the processes it can
and then warns you if it can not attach to some of them. If you attempt to
dive into a process that no longer exists (for example, using a message
queue display), TotalView tells you that the process no longer exists.

Using MPICH P4 procgroup Files

If you’re using MPICH with a P4 procgroup file (by using the –p4pg option),
you must use the same absolute path name in your procgroup file and on
the mpirun command line. For example, if your procgroup file contains a
different path name than that used in the mpirun command, even though
this name resolves to the same executable, TotalView assumes that it is a
different executable, which causes debugging problems.

The following example uses the same absolute path name on the TotalView
command line and in the procgroup file:

% cat p4group
local 1 /users/smith/mympichexe
bigiron 2 /users/smith/mympichexe
% mpirun –p4pg p4group –tv /users/smith/mympichexe

In this example, TotalView does the following:

1 Reads the symbols from mympichexe only once.
2 Places MPICH processes in the same TotalView share group.
3 Names the processes mypichexe.0, mympichexe.1, mympichexe.2, and

mympichexe.3.

If TotalView assigns names such as mympichexe<mympichexe>.0, a prob-
lem occurred and you need to compare the contents of your procgroup file
and mpirun command line.

Debugging MPICH2 Applications

110 Chapter 6: Setting Up MPI Debugging Sessions

Debugging MPICH2 Applications

You should be using MPICH2 version 1.0.5p4 or higher. Earlier versions had problems
that prevented TotalView from attaching to all the processes or viewing message queue
data.

Downloading and Configuring MPICH2

You can download the current MPICH2 version from:

http://www-unix.mcs.anl.gov/mpi/mpich/

If you wish to use all of the TotalView MPI features, you must configure
MPICH2. Do this by adding the following to the configure script that is
within the downloaded information:

- -enable-debuginfo - -enable-totalview

The configure script looks for the following file:

python2.x/config/Makefile

It fails if the file is not there.

The next steps are:

1 Run make
2 Run make install

This places the binaries and libraries in the directory specified by the
optional - -prefix option.

3 Set the PATH and LD_LIBRARY_PATH to point to the MPICH2 bin and lib
directories.

Starting the mpd Daemon

You must start the mpd daemon using the mpdboot command. For exam-
ple:

mpdboot -n 4 -f hostfile

where:

–n 4 Indicates the number of hosts upon which you wish to
run the daemon. In this example, the daemon runs on
four hosts

–f hostfile Is a list of the hosts upon which the application will
run. In this example, a file named hostfile contains this
list.

You are now ready to start debugging your application.

TotalView only supports jobs run using MPD. Using other daemons such as SMPD is
not supported.

Starting MPI Issues

TotalView Users Guide: version 8.6 111

Starting TotalView Debugging on an MPICH2 Job

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 104.

TotalView lets you start an MPICH2 job in one of the following ways:

mpiexec mpi-args –tv program –a program-args
This command tells MPI to start TotalView. You will need
to set the TOTALVIEW environment variable to where
TotalView is located in your file system when you start a
program using mpiexec. For example:

setenv TOTALVIEW \
/opt/totalview/bin/totalview

This method of starting TotalView does not let you re-
start your program without exiting TotalView and you
will not be able to attach to a running MPI job.

totalview python -a `which mpiexec` \
–tvsu mpiexec-args program program-args

This command lets you restart your MPICH2 job. It also
lets you attach to a running MPICH2 job by using the
Attach to process options within the File > New
Program dialog box. You need to be careful that you at-
tach to the right instance of python as it is likely that a
few instances are running. The one to which you want to
attach has no attached children—child processes are in-
dented with a line showing the connection to the parent.

You may not see sources to your program at first. If you
do see the program, you can set breakpoints. In either
case, press the Go button. Your process will start and
TotalView displays a dialog box when your program
goes parallel that allows you to stop execution. (This is
the default behavior. You can change it using the op-
tions within File >Preferences >Parallel page.)

You will also need to set the TOTALVIEW environment
variable as indicated in the previous method.

Starting MPI Issues

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 104.

MPI Rank Display

112 Chapter 6: Setting Up MPI Debugging Sessions

If you can’t successfully start TotalView on MPI programs, check the following:

Can you successfully start MPICH programs without TotalView?
The MPICH code contains some useful scripts that let you verify that you
can start remote processes on all of the computers in your computers file.
(See tstmachines in mpich/util.)
You won’t get a message queue display if you get the following warning:
The symbols and types in the MPICH library used by
TotalView to extract the message queues are not as
expected in the image <your image name>. This is probably
an MPICH version or configuration problem.
You need to check that you are using MPICH Version 1.1.0 or later and that
you have configured it with the –debug option. (You can check this by
looking in the config.status file at the root of the MPICH directory tree.)
Does the TotalView Server (tvdsvr) fail to start?
tvdsvr must be in your PATH when you log in. Remember that TotalView
uses rsh to start the server, and that this command doesn’t pass your cur-
rent environment to remotely started processes.
Make sure you have the correct MPI version and have applied all required
patches. See the TotalView Release Notes for up-to-date information.
Under some circumstances, MPICH kills TotalView with the SIGINT signal.
You can see this behavior when you use the Group > Kill command as
the first step in restarting an MPICH job.

If TotalView exits and terminates abnormally with a Killed message, try set-
ting the TV::ignore_control_c variable to true.

MPI Rank Display

The Processes/Ranks Tab at the bottom of the Process Window contains a
grid that displays the status of each rank. For example, in Figure 89, six
ranks are at a breakpoint, one is running, and one is stopped.

For more information, see “Using the Processes/Ranks Tab” on page 231.

CLI: dfocus g ddelete

Figure 89: Ranks Tab

Displaying the Message Queue Graph Window

TotalView Users Guide: version 8.6 113

Displaying the
Message Queue Graph Window

TotalView can graphically display your MPI program’s message queue state. If
you select the Process Window Tools > Message Queue Graph command,
TotalView displays a window that shows a graph of the current message
queue state. (See Figure 90.)

If you want to restrict what TotalView displays, you can select the Options
button. This is shown in Figure 91 on page 114.

Using commands and controls within this window, you can alter the way in
which TotalView displays ranks within this window—for example, as a grid
or in a circle.

Using the commands within the Cycle Detection tab tells TotalView to let
you know about cycles in your messages. This is a quick and efficient way
to detect when messages are blocking one another and causing deadlocks.

Perhaps the most used of these tabs is Filter. (See Figure 92 on page 114.)

The button colors used for selecting messages are the same as those used to
draw the lines and arrows in the Message Queue Graph Window, as follows:

Green: Pending Sends
Blue: Pending Receives
Red: Unexpected Messages

Figure 90: Tools > Message
Queue Graph Window

Displaying the Message Queue Graph Window

114 Chapter 6: Setting Up MPI Debugging Sessions

You can directly select which ranks you want displayed in the lower part of
the window. The Filter on specified message tags area lets you name which
tags should be used as filters. Finally, you can select a group or a communi-
cator in the group pulldown, If you have created your own communicators
and groups, they will appear here.

Changes made within the Options dialog box do not occur until after you
click the Apply button. The graph window will then change to reflect your
changes.

The message queue graph shows your program’s state at a particular
instant. Selecting the Update button tells TotalView to fetch new informa-
tion and redraw the graph.

The numbers in the boxes within the Message Queue Graph Window indi-
cate the MPI message source or destination process rank. Diving on a box
tells TotalView to open a Process Window for that process.

The numbers next to the arrows indicate the MPI message tags that existed
when TotalView created the graph. Diving on an arrow tells TotalView to dis-

Figure 91: Tools > Message
Queue Graph Options
Window

Figure 92: Tools > Message
Queue Graph Options.
Filter Tab

Displaying the Message Queue

TotalView Users Guide: version 8.6 115

play its Tools > Message Queue Window, which has detailed information
about the messages. If TotalView has not attached to a process, it displays
this information in a grey box.

You can use the Message Queue Graph Window in many ways, including the
following:

Pending messages often indicate that a process can’t keep up with the
amount of work it is expected to perform. These messages indicate
places where you may be able to improve your program’s efficiency.
Unexpected messages can indicate that something is wrong with your
program because the receiving process doesn’t know how to process the
message. The red lines indicate unexpected messages.
After a while, the shape of the graph tends to tell you something about
how your program is executing. If something doesn’t look right, you
might want to determine why.
You can change the shape of the graph by dragging nodes or arrows. This
is often useful when you’re comparing sets of nodes and their messages
with one another. Ordinarily, TotalView doesn’t remember the places to
which you have dragged the nodes and arrows. This means that if you se-
lect the Update button after you arrange the graph, your changes are
lost. However, if you select Keep nodes as positioned from with the
Options dialog box, updating the window does not change node posi-
tioning.

Displaying the Message Queue

The Tools > Message Queue Window displays your MPI program’s message
queue state textually. This can be useful when you need to find out why a
deadlock occurred.

The MPI versions for which we display the message queue are described in
our platforms guide. This document is contained within the online help and
is also available on our web site at http://www.totalviewtech.com/Docu-
mentation/

For more information, see:

“About the Message Queue Display” on page 115
“Using Message Operations” on page 116

About the Message Queue Display

After an MPI process returns from the call to MPI_Init(), you can display the
internal state of the MPI library by selecting the Tools > Message Queue
command. (See Figure 93 on page 116.)

This window displays the state of the process’s MPI communicators. If
user-visible communicators are implemented as two internal communica-

Displaying the Message Queue

116 Chapter 6: Setting Up MPI Debugging Sessions

tor structures, TotalView displays both of them. One is used for point-to-
point operations and the other is used for collective operations.

You cannot edit any of the fields in the Message Queue Window.

The contents of the Message Queue Window are only valid when a process
is stopped.

Using Message Operations

For each communicator, TotalView displays a list of pending receive opera-
tions, pending unexpected messages, and pending send operations. Each
operation has an index value displayed in brackets ([n]). The online Help for
this window contains a description of the fields that you can display.

For more information, see:

“Diving on MPI Processes” on page 116
“Diving on MPI Buffers” on page 117
“About Pending Receive Operations” on page 117
“About Unexpected Messages” on page 117
“About Pending Send Operations” on page 118

Diving on MPI Processes
To display more detail, you can dive into fields in the Message Queue Window.
When you dive into a process field, TotalView does one of the following:

Raises its Process Window if it exists.
Sets the focus to an existing Process Window on the requested process.
Creates a new Process Window for the process if a Process Window
doesn’t exist.

Figure 93: Message Queue
Window

Displaying the Message Queue

TotalView Users Guide: version 8.6 117

Diving on MPI Buffers
When you dive into the buffer fields, TotalView opens a Variable Window. It
also guesses what the correct format for the data should be based on the
buffer length and the data alignment. You can edit the Type field within the
Variable Window, if necessary.

TotalView doesn’t use the MPI data type to set the buffer type.

About Pending Receive Operations
TotalView displays each pending receive operation in the Pending receives
list. Figure 94 shows an example of an MPICH pending receive operation.

TotalView displays all receive operations maintained by the IBM MPI library. Set the
environment variable MP_EUIDEVELOP to the value DEBUG if you want blocking
operations to be visible; otherwise, the library only maintains nonblocking operations.
For more details on the MP_EUIDEVELOP environment variable, see the IBM Parallel
Environment Operations and Use manual.

About Unexpected Messages
The Unexpected messages portion of the Message Queue Window shows
information for retrieved and enqueued messages that are not yet matched
with a receive operation.

Some MPI libraries, such as MPICH, only retrieve messages that have
already been received as a side effect of calls to functions such as
MPI_Recv() or MPI_Iprobe(). (In other words, while some versions of MPI
may know about the message, the message may not yet be in a queue.)
This means that TotalView can’t list a message until after the destination
process makes a call that retrieves it.

Figure 94: Message Queue
Window Showing Pending
Receive Operation

Debugging Cray MPI Applications

118 Chapter 6: Setting Up MPI Debugging Sessions

About Pending Send Operations
TotalView displays each pending send operation in the Pending sends list.

MPICH does not normally keep information about pending send opera-
tions. If you want to see them, start your program under TotalView control
and use the mpirun –ksq or –KeepSendQueue command.

Depending on the device for which MPICH was configured, blocking send
operations may or may not be visible. However, if TotalView doesn’t display
them, you can see that these operations occurred because the call is in the
stack backtrace.

If you attach to an MPI program that isn’t maintaining send queue informa-
tion, TotalView displays the following message:

Pending sends : no information available

Debugging Cray MPI Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 104

Specific information on debugging Cray MPI applications is located in our
discussion of running TotalView on Cray platforms. See “Debugging Cray XT
Applications” on page 150 for information.

Debugging HP Tru64 Alpha MPI
Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 104.

To use TotalView with HP Tru64 Alpha MPI applications, you must use HP
Tru64 Alpha MPI version 1.7 or later.

Starting TotalView on an HP Alpha MPI Job

In most cases, you start an HP Alpha MPI program by using the dmpirun
command. The command for starting an MPI program under TotalView con-
trol is similar; it uses the following syntax:

{ totalview | totalviewcli } dmpirun –a dmpirun-command-line

Debugging HP MPI Applications

TotalView Users Guide: version 8.6 119

This command invokes TotalView and tells it to show you the code for the
main program in dmpirun. Since you’re not usually interested in debugging
this code, use the Process > Go command to let the program run.

The dmpirun command runs and starts all MPI processes. After TotalView
acquires them, it asks if you want to stop them.

Problems can occur if you rerun HP Alpha MPI programs that are under TotalView con-
trol because resource allocation issues exist within HP Alpha MPI. The HP Alpha MPI
documentation contains information on using mpiclean to clean up the MPI system
state.

Attaching to an HP Alpha MPI Job

To attach to a running HP Alpha MPI job, attach to the dmpirun process
that started the job. The procedure for attaching to a dmpirun process is
the same as the procedure for attaching to other processes. For details,
see “Attaching to Processes” on page 63. You can also use the Group > Attach
Subset command which is discussed in “Attaching to Processes” on page 130.

After you attach to the dmpirun process, TotalView asks if you also want to
attach to slave MPICH processes. If you do, press Return or choose Yes. If
you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all
MPICH processes.

Debugging HP MPI Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 104.

You can debug HP MPI applications on a PA-RISC 1.1 or 2.0 processor. To use
TotalView with HP MPI applications, you must use HP MPI versions 1.6 or 1.7.

CLI: dfocus p dgo

Debugging HP MPI Applications

120 Chapter 6: Setting Up MPI Debugging Sessions

Starting TotalView on an HP MPI Job

TotalView lets you start an MPI program in one of the following ways:

{ totalview | totalviewcli } program –a mpi-arguments
This command tells TotalView to start the MPI process.
TotalView then shows you the machine code for the HP
MPI mpirun executable.

mpirun mpi-arguments –tv program
This command tells MPI to start TotalView. You will need
to set the TOTALVIEW environment variable to where
TotalView is located in your file system when you start a
program using mpirun. For example:

setenv TOTALVIEW \
/opt/totalview/bin/totalview

mpirun mpi-arguments –tv –f startup_file
This command tells MPI to start TotalView and then
start the MPI processes as they are defined in the
startup_file script. This file names the processes that
MPI starts. Typically, this file has contents that are simi-
lar to:

-h aurora –np 8/path/to/program
-h borealis –np 8 /path/to/program1

Your HP MPI documentation describes the contents of
this startup file. These contents include the remote
host name, environment variables, number of pro-
cesses, programs, and so on. As is described in the
previous example, you must set the TOTALVIEW envi-
ronment variable.

Just before mpirun starts your MPI processes, TotalView acquires them and
asks if you want to stop the processes before they start executing. If you
answer yes, TotalView halts them before they enter the main() routine. You
can then create breakpoints.

Attaching to an HP MPI Job

To attach to a running HP MPI job, attach to the HP MPI mpirun process
that started the job. The procedure for attaching to an mpirun process is
the same as the procedure for attaching to any other process. For details,
see “Attaching to Processes” on page 63.

After TotalView attaches to the HP MPI mpirun process, it displays the
same dialog box as it does with MPICH. (See step 4 on page 109 of “Attach-
ing to an MPICH Job” on page 108.)

CLI: dfocus p dgo

Debugging IBM MPI Parallel Environment (PE) Applications

TotalView Users Guide: version 8.6 121

Debugging IBM MPI Parallel
Environment (PE) Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 104.

You can debug IBM MPI Parallel Environment (PE) applications on the IBM
RS/6000 and SP platforms.

To take advantage of TotalView’s ability to automatically acquire processes,
you must be using release 3,1 or later of the Parallel Environment for AIX.

Topics in this section are:

“Preparing to Debug a PE Application” on page 121
“Starting TotalView on a PE Program” on page 122
“Setting Breakpoints” on page 122
“Starting Parallel Tasks” on page 123
“Attaching to a PE Job” on page 123

Preparing to Debug a PE Application

The following sections describe what you must do before TotalView can
debug a PE application.

Using Switch-Based Communications
If you’re using switch-based communications (either IP over the switch or user
space) on an SP computer, you must configure your PE debugging session so
that TotalView can use IP over the switch for communicating with the
TotalView Server (tvdsvr). Do this by setting the –adapter_use option to
shared and the –cpu_use option to multiple, as follows:

If you’re using a PE host file, add shared multiple after all host names or
pool IDs in the host file.
Always use the following arguments on the poe command line:
–adapter_use shared –cpu_use multiple

If you don’t want to set these arguments on the poe command line, set the
following environment variables before starting poe:

setenv MP_ADAPTER_USE shared
setenv MP_CPU_USE multiple

When using IP over the switch, the default is usually shared adapter use and
multiple cpu use; we recommend that you set them explicitly using one of
these techniques. You must run TotalView on an SP or SP2 node. Since
TotalView will be using IP over the switch in this case, you cannot run
TotalView on an RS/6000 workstation.

Debugging IBM MPI Parallel Environment (PE) Applications

122 Chapter 6: Setting Up MPI Debugging Sessions

Performing a Remote Login
You must be able to perform a remote login using the rsh command. You
also need to enable remote logins by adding the host name of the remote
node to the /etc/hosts.equiv file or to your .rhosts file.

When the program is using switch-based communications, TotalView tries
to start the TotalView Server by using the rsh command with the switch
host name of the node.

Setting Timeouts
If you receive communications timeouts, you can set the value of the
MP_TIMEOUT environment variable; for example:

setenv MP_TIMEOUT 1200

If this variable isn’t set, TotalView uses a timeout value of 600 seconds.

Starting TotalView on a PE Program

The following is the syntax for running Parallel Environment (PE) programs
from the command line:

program [arguments] [pe_arguments]

You can also use the poe command to run programs as follows:

poe program [arguments] [pe_arguments]

If, however, you start TotalView on a PE application, you must start poe as
TotalView’s target using the following syntax:

{ totalview | totalviewcli } poe –a program [arguments] [PE_arguments]

For example:

totalview poe –a sendrecv 500 –rmpool 1

Setting Breakpoints

After TotalView is running, start the poe process using the Process > Go com-
mand.

TotalView responds by displaying a dialog box—in the CLI, it prints a ques-
tion—that asks if you want to stop the parallel tasks.

If you want to set breakpoints in your code before they begin executing,
answer Yes. TotalView initially stops the parallel tasks, which also allows
you to set breakpoints. You can now set breakpoints and control parallel
tasks in the same way as any process controlled by TotalView.

CLI: dfocus p dgo

Debugging IBM MPI Parallel Environment (PE) Applications

TotalView Users Guide: version 8.6 123

If you have already set and saved breakpoints with the Action Point > Save
All command, and you want to reload the file, answer No. After TotalView
loads these saved breakpoints, the parallel tasks begin executing.

Starting Parallel Tasks

After you set breakpoints, you can start all of the parallel tasks with the
Process Window Group > Go command.

No parallel tasks reach the first line of code in your main routine until all parallel tasks
start.

Be very cautious in placing breakpoints at or before a line that calls
MPI_Init() or MPL_Init() because timeouts can occur while your program is
being initialized. After you allow the parallel processes to proceed into the
MPI_Init() or MPL_Init() call, allow all of the parallel processes to proceed
through it within a short time. For more information on this, see “Avoid
unwanted timeouts” on page 135.

Attaching to a PE Job

To take full advantage of TotalView’s poe-specific automation, you need to
attach to poe itself, and let TotalView automatically acquire the poe pro-
cesses on all of its nodes. In this way, TotalView acquires the processes you
want to debug.

Attaching from a Node Running poe
To attach TotalView to poe from the node running poe:

1 Start TotalView in the directory of the debug target.
If you can’t start TotalView in the debug target directory, you can start
TotalView by editing the tvdsvr command line before attaching to poe. See
“Using the Single-Process Server Launch Command” on page 92.

2 In the File > New Program dialog box, select Attach to an existing process,
then find the poe process list, and attach to it by diving into it. When nec-
essary, TotalView launches tvdsvrs. TotalView also updates the Root
Window and opens a Process Window for the poe process.

CLI: dactions –save filename
dactions –load filename

CLI: dfocus G dgo
Abbreviation: G

CLI: dattach poe pid

Debugging IBM Blue Gene Applications

124 Chapter 6: Setting Up MPI Debugging Sessions

3 Locate the process you want to debug and dive on it. TotalView responds
by opening a Process Window for it. If your source code files are not dis-
played in the Source Pane, you might not have told TotalView where these
files reside. You can fix this by invoking the File > Search Path command
to add directories to your search path.

Attaching from a Node Not Running poe
The procedure for attaching TotalView to poe from a node that is not run-
ning poe is essentially the same as the procedure for attaching from a node
that is running poe. Since you did not run TotalView from the node running
poe (the startup node), you won’t be able to see poe on the process list in
the Root Window and you won’t be able to start it by diving into it.

To place poe in this list:

1 Connect TotalView to the startup node. For details, see “Setting Up and
Starting the TotalView Server” on page 85 and “Attaching to Processes” on
page 63.

2 Select the File > New Program dialog box, and select Attach to an existing
process.

3 Look for the process named poe and continue as if attaching from a node
that is running poe.

Debugging IBM Blue Gene
Applications

While the way in which you debug IBM Blue Gene MPI programs is identical
to the way in which you debug these programs on other platforms, starting
TotalView on your program differs slightly. Unfortunately, each machine is
configured differently so you’ll need to find information in IBM’s documen-
tation or in documentation created at your site.

Nevertheless, the remainder of this section will present some hints.

In general, you will either launch mpirun under debugger control or start
TotalView and attach to an already running mpirun. For example:

{ totalview | totalviewcli } mpirun –a mpirun-command-line

TotalView tells mpirun to launch TotalView Debug Servers on each Blue
Gene I/O node.

Because I/O nodes cannot resolve network names, TotalView must pass the
address of the front-end node interface to the servers on the I/O nodes.
This is usually not the same interface that is generally used to connect to

CLI: dattach -r hostname poe poe-pid

Debugging LAM/MPI Applications

TotalView Users Guide: version 8.6 125

the front-end node. TotalView assumes that the address can be resolved by
using a name that is:

front-end-hostname-io.

For example, if the hostname of the front-end is fred, the servers will con-
nect to fred-io.

The systems at the IBM Blue Gene Capacity on Demand follow this convention. If you
are executing programs there, you will not need to set the TotalView variables described
in the rest of this section.

If the front-end cannot resolve this name, you must supply the name of the
interface using the –local_interface command-line option or by setting the
bluegene_io_interface TotalView variable. (This variable is described in the
Chapter 4 of the TotalView Reference Guide.)

Because the same version of TotalView must be able to debug both Power-
Linux programs (for example, mpirun) and Blue Gene programs, TotalView
uses a Blue Gene-specific server launch string. You can define this launch
string by setting the bluegene_server_launch_string TotalView variable or
command-line option.

You must set this variable in a tvdrc file. This differs from other TotalView launch
strings, which you can set using the File > Preferences Dialog Box.

The default value for the bluegene_server_launch_string variable is:

–callback %L –set_pw %P -verbosity %V %F

In this string, %L is the address of the front-end node interface used by the
servers. The other substitution arguments have the same meaning as they
do in a normal server launch string. These substitution arguments are dis-
cussed in Chapter 7 of the TotalView Reference Guide.

Debugging LAM/MPI Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 104.

The following is a description of the LAM/MPI implementation of the MPI
standard. Here are the first two paragraphs of Chapter 2 of the “LAM/MPI
User’s Guide”. You can obtain this document by going to the LAM documen-
tation page, which is: http://www.lam-mpi.org/using/docs/.

“LAM/MPI is a high-performance, freely available, open source implemen-
tation of the MPI standard that is researched, developed, and maintained
at the Open Systems Lab at Indiana University. LAM/MPI supports all of

Debugging QSW RMS Applications

126 Chapter 6: Setting Up MPI Debugging Sessions

the MPI-1 Standard and much of the MPI-2 standard. More information
about LAM/MPI, including all the source code and documentation, is
available from the main LAM/MPI web site.

“LAM/MPI is not only a library that implements the mandated MPI API, but
also the LAM run-time environment: a user-level, daemon-based run-time
environment that provides many of the services required by MPI pro-
grams. Both major components of the LAM/MPI package are designed as
component frameworks—extensible with small modules that are select-
able (and configurable) at run-time. ...

You debug a LAM/MPI program in a similar way to how you debug most MPI
programs. Use the following syntax if TotalView is in your path:

mpirun –tv args prog prog_args

As an alternative, you can invoke TotalView on mpirun:

totalview mpirun –a prog prog_args

The LAM/MPI User’s Guide discusses how to use TotalView to debug LAM/
MPI programs.

Debugging QSW RMS Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 104.

TotalView supports automatic process acquisition on AlphaServer SC sys-
tems and 32-bit Red Hat Linux systems that use Quadrics RMS resource
management system with the QSW switch technology.

Message queue display is only supported if you are running version 1, patch 2 or later,
of AlphaServer SC.

Starting TotalView on an RMS Job

To start a parallel job under TotalView control, use TotalView as if you were
debugging prun:

{ totalview | totalviewcli } prun –a prun-command-line

TotalView starts and shows you the machine code for RMS prun. Since
you’re not usually interested in debugging this code, use the Process > Go
command to let the program run.

CLI: dfocus p dgo

Debugging SiCortex MPI Applications

TotalView Users Guide: version 8.6 127

The RMS prun command executes and starts all MPI processes. After
TotalView acquires them, it asks if you want to stop them at startup. If you
answer yes, TotalView halts them before they enter the main program. You
can then create breakpoints.

Attaching to an RMS Job

To attach to a running RMS job, attach to the RMS prun process that
started the job.

You attach to the prun process the same way you attach to other processes.
For details on attaching to processes, see “Attaching to Processes” on page 63.

After you attach to the RMS prun process, TotalView asks if you also want
to attach to slave MPICH processes. If you do, press Return or choose Yes.
If you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all
MPI processes.

As an alternative, you can use the Group > Attach Subset command to pre-
define what TotalView should do. For more information, see “Attaching to
Processes” on page 130.

Debugging SiCortex MPI Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 104

Specific information on debugging SiCortex MPI applications is located in
our discussion of running TotalView on SiCortex platforms. See “Debugging
SiCortex Applications” on page 153 for information.

Debugging SGI MPI Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 104.

Debugging SGI MPI Applications

128 Chapter 6: Setting Up MPI Debugging Sessions

TotalView can acquire processes started by SGI MPI applications. This MPI
is part of the Message Passing Toolkit (MPT) 1.3 and 1.4 packages.
TotalView can display the Message Queue Graph Window for these
releases. See “Displaying the Message Queue Graph Window” on page 113 for
message queue display.

Starting TotalView on an SGI MPI Job

You normally start SGI MPI programs by using the mpirun command. You
use a similar command to start an MPI program under debugger control, as
follows:

{ totalview | totalviewcli } mpirun –a mpirun-command-line

This invokes TotalView and tells it to show you the machine code for
mpirun. Since you’re not usually interested in debugging this code, use the
Process > Go command to let the program run.

The SGI MPI mpirun command runs and starts all MPI processes. After
TotalView acquires them, it asks if you want to stop them at startup. If you
answer Yes, TotalView halts them before they enter the main program. You
can then create breakpoints.

If you set a verbosity level that allows informational messages, TotalView
also prints a message that shows the name of the array and the value of
the array services handle (ash) to which it is attaching.

Attaching to an SGI MPI Job

To attach to a running SGI MPI program, attach to the SGI MPI mpirun pro-
cess that started the program. The procedure for attaching to an mpirun
process is the same as the procedure for attaching to any other process.
For details, see “Attaching to Processes” on page 63.

After you attach to the mpirun process, TotalView asks if you also want to
attach to slave MPICH processes. If you do, press Return or choose Yes. If
you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all
MPICH processes.

As an alternative, you can use the Group > Attach Subset command to pre-
define what TotalView will do. For more information, see “Attaching to Pro-
cesses” on page 130.

Using ReplayEngine with SGI MPI

SGI MPI uses the xpmem module to map memory from one MPI process to
another during job startup. Memory mapping is enabled by default. The
size of this mapped memory can be quite large, and can have a negative
effect on TotalView’s ReplayEngine performance. Therefore, we have lim-

CLI: dfocus p dgo

Debugging Sun MPI Applications

TotalView Users Guide: version 8.6 129

ited mapped memory by default for the xpmem module if Replay is
enabled. The environment variable, MPI_MEMMAP_OFF, is set to 1 in the
TotalView file parallel_support.tvd by adding the variable to the replay_env:
specification as follows: replay_env: MPI_MEMMAP_OFF=1.

If full memory mapping is required, you can set the startup environment
variable in the Startup Parameters dialog window (in the Arguments tab).
Add the following to the environment variables: MPI_MEMMAP_OFF=0.

Be aware that the default mapped memory size may prove to be too large
for ReplayEngine to deal with, and it could be quite slow. You can limit the
size of the mapped heap area by using the MPI_MAPPED_HEAP_SIZE envi-
ronment variable documented in the SGI documentation. After turning off
MEMMAP_OFF as described above, you can set the size (in bytes) in the
TotalView startup parameters.

For example:

MPI_MAPPED_HEAP_SIZE=1048576

SGI has a patch for an MPT/XPMEM issue. Without this patch, XPMEM can crash
the system if ReplayEngine is turned on. To get the XPMEM fix for the munmap prob-
lem, either upgrade to ProPack 6 SP 4 or install SGI patch 10570 on top of ProPack 6
SP 3.

Debugging Sun MPI Applications

In many cases, you can bypass the procedure described in this section. For more infor-
mation, see “Debugging MPI Programs” on page 104.

TotalView can debug a Sun MPI program and can display Sun MPI message
queues. This section describes how to perform job startup and job attach opera-
tions.

To start a Sun MPI application, use the following procedure.

1 Type the following command:
totalview mprun [totalview_args] –a [mpi_args]
For example:
totalview mprun –g blue –a –np 4 /usr/bin/mpi/conn.x

When the TotalView Process Window appears, select the Go button.

CLI: totalviewcli mprun [totalview_args] –a [mpi_args]

CLI: dfocus p dgo

Debugging Parallel Applications Tips

130 Chapter 6: Setting Up MPI Debugging Sessions

TotalView may display a dialog box with the following text:
Process mprun is a parallel job. Do you want to stop
the job now?

2 If you compiled using the –g option, click Yes to tell TotalView to open a
Process Window that shows your source. All processes are halted.

Attaching to a Sun MPI Job

To attach to an already running mprun job:

1 Find the host name and process identifier (PID) of the mprun job by typing
mpps –b. For more information, see the mpps(1M) manual page.
The following is sample output from this command:
JOBNAME MPRUN_PID MPRUN_HOST
cre.99 12345 hpc-u2-9
cre.100 12601 hpc-u2-8

2 After selecting File > New Program, type mprun in the Executable field
and type the PID in the Process ID field.

3 If TotalView is running on a different node than the mprun job, enter the
host name in the Remote Host field.

Debugging Parallel Applications Tips

This section contains information about debugging parallel programs:

“Attaching to Processes” on page 130
“Parallel Debugging Tips” on page 133
“MPICH Debugging Tips” on page 135
“IBM PE Debugging Tips” on page 135

Attaching to Processes

In a typical multi-process job, you’re interested in what’s occurring in some
of your processes and not as much interested in others. By default,
TotalView tries to attach to all of the processes that your program starts. If
there are a lot of processes, there can be considerable overhead involved
in opening and communicating with the jobs.

CLI: dattach mprun mprun-pid
For example:

dattach mprun 12601

CLI: dattach –r host-name mprun mprun-pid

Debugging Parallel Applications Tips

TotalView Users Guide: version 8.6 131

You can minimize this overhead by using the Group > Attach Subset com-
mand, which displays the dialog box shown in tFigure 95.

TotalView lets you start MPI jobs in two ways. One requires that the starter program be
under TotalView control and have special instrumentation for TotalView while the other
does not. In the first case, you will enter the name of the starter program on the com-
mand line. The other requires that you enter information into the File > New Program
or Process > Startup Parameters dialog boxes. The Attach Subset command is only
available if you directly name a starter program on the command line.

Selecting boxes on the left side of the list tells TotalView which processes it
should attach to. Although your program will launch all of these processes,
TotalView only attaches to the processes that you have selected.

The controls under the All and the None buttons let you limit which pro-
cesses TotalView automatically attaches to, as follows:

The Communicator control specifies that the processes must be involved
with the communicators that you select. For example, if something goes
wrong that involves a communicator, selecting it from the list tells
TotalView to only attach to the processes that use that communicator.
The Talking to Rank control further limits the processes to those that you
name here. Most of the entries in this list are just the process numbers.
In most cases, you would select All or MPI_ANY_SOURCE.
The three checkboxes in the Message Type area add yet another qualifier.
Checking a box tells TotalView to only display communicators that are in-
volved with a Send, Receive, or Unexpected message.

After you find the problem, you can detach from these nodes by selecting
None. In most cases, use the All button to select all the check boxes, then
clear the ones that you’re not interested in.

Figure 95: Group > Attach
Subset Dialog Box

Debugging Parallel Applications Tips

132 Chapter 6: Setting Up MPI Debugging Sessions

Many applications place values that indicate the rank in a variable so that
the program can refer to them as they are needed. If you do this, you can
display the variable in a Variable Window and then select the Tools > Attach
Subset (Array of Ranks) command to display this dialog box.

You can use the Group > Attach Subset command at any time, but you
would probably use it immediately before TotalView launches processes.
Unless you have set preferences otherwise, TotalView stops and asks if you
want it to stop your processes. When selected, the Halt control group
check box also tells TotalView to stop a process just before it begins exe-
cuting. (See Figure 96.)

If you click Yes, when the job stops the starter process should be at a “magic break-
point.” These are set by TotalView behind the scene, and usually not visible. The other
processes may or may not be at a “magic breakpoint.”

The commands on the Parallel Page in the File > Preferences Dialog Box let
you control what TotalView does when your program goes parallel. (See
Figure 97.)

Figure 96: Stop Before Going
Parallel Question Box

Figure 97: File > Preferences:
Parallel Page

Debugging Parallel Applications Tips

TotalView Users Guide: version 8.6 133

TotalView only displays the preceding question box when you directly name a starter
program on the command line.

The radio button in the When a job goes parallel or calls exec() area lets
TotalView:

Stop the group: Stop the control group immediately after the processes
are created.
Run the group: Allow all newly created processes in the control group to
run freely.
Ask what to do: Ask what should occur. If you select this option,
TotalView asks if it should start the created processes.

The radio buttons in the When a job goes parallel area let TotalView:

Attach to all: Automatically attach to all processes when they begin exe-
cuting.
Attach to none: Does not attach to any created process when it begins
executing.
Ask what to do: Asks what should occur. If you select this option,
TotalView opens the same dialog box that is displayed when you select
Group > Attach Subset. TotalView then attaches to the processes that
you have selected. This dialog box isn’t displayed when you set the pref-
erence. Instead, it controls what happens when your program creates
parallel processes.

Parallel Debugging Tips

The following tips are useful for debugging most parallel programs:

Setting Breakpoint behavior
When you’re debugging message-passing and other multi-process pro-
grams, it is usually easier to understand the program’s behavior if you
change the default stopping action of breakpoints and barrier break-
points. By default, when one process in a multi-process program hits a
breakpoint, TotalView stops all the other processes.
To change the default stopping action of breakpoints and barrier break-
points, you can set debugger preferences. The online Help contains infor-
mation on these preference. These preferences tell TotalView whether to
continue to run when a process or thread hits the breakpoint.
These options only affect the default behavior. You can choose a behavior
for a breakpoint by setting the breakpoint properties in the File >
Preferences Action Points Page. See “Setting Breakpoints for Multiple Pro-
cesses” on page 361.
Synchronizing processes
TotalView has two features that make it easier to get all of the processes
in a multi-process program synchronized and executing a line of code.

CLI: dset TV::parallel_stop

CLI: dset TV::parallel_attach

Debugging Parallel Applications Tips

134 Chapter 6: Setting Up MPI Debugging Sessions

Process barrier breakpoints and the process hold/release features work
together to help you control the execution of your processes. See “Setting
Barrier Points” on page 364.
The Process Window Group > Run To command is a special stepping com-
mand. It lets you run a group of processes to a selected source line or
instruction. See “Stepping (Part I)” on page 255.
Using group commands
Group commands are often more useful than process commands.
It is often more useful to use the Group > Go command to restart the
whole application instead of the Process > Go command.

You would then use the Group > Halt command instead of Process > Halt
to stop execution.

The group-level single-stepping commands such as Group > Step and
Group > Next let you single-step a group of processes in a parallel. See
“Stepping (Part I)” on page 255.

Stepping at process level
If you use a process-level single-stepping command in a multi-process pro-
gram, TotalView may appear to hang (it continuously displays the watch
cursor). If you single-step a process over a statement that can’t complete
without allowing another process to run, and that process is stopped, the
stepping process appears to hang. This can occur, for example, when you
try to single-step a process over a communication operation that cannot
complete without the participation of another process. When this happens,
you can abort the single-step operation by selecting Cancel in the Waiting
for Command to Complete Window that TotalView displays. As an alterna-
tive, consider using a group-level single-step command.

TotalView Technologies receives many bug reports about processes being hung. In
almost all cases, the reason is that one process is waiting for another. Using the Group
debugging commands almost always solves this problem.

Determining which processes and threads are executing

CLI: dfocus g dgo
Abbreviation: G

CLI: dfocus g dhalt
Abbreviation: H

CLI: dfocus g dstep
Abbreviation: S
dfocus g dnext
Abbreviation: N

CLI: Type Ctrl+C

Debugging Parallel Applications Tips

TotalView Users Guide: version 8.6 135

The Root Window helps you determine where various processes and
threads are executing. When you select a line of code in the Process Win-
dow, the Root Window updates to show which processes and threads are
executing that line.
Viewing variable values
You can view the value of a variable that is replicated across multiple pro-
cesses or multiple threads in a single Variable Window. See “Displaying a
Variable in all Processes or Threads” on page 347.
Restarting from within TotalView
You can restart a parallel program at any time. If your program runs past
the point you want to examine, you can kill the program by selecting the
Group > Kill command. This command kills the master process and all the
slave processes. Restarting the master process (for example, mpirun or
poe) recreates all of the slave processes. Start up is faster when you do
this because TotalView doesn’t need to reread the symbol tables or
restart its tvdsvr processes, since they are already running.

MPICH Debugging Tips

The following debugging tips apply only to MPICH:

Passing options to mpirun
You can pass options to TotalView using the MPICH mpirun command.
To pass options to TotalView when running mpirun, you can use the
TOTALVIEW environment variable. For example, you can cause mpirun to
invoke TotalView with the –no_stop_all option, as in the following C shell
example:
setenv TOTALVIEW "totalview –no_stop_all"
Using ch_p4
If you start remote processes with MPICH/ch_p4, you may need to change
the way TotalView starts its servers.
By default, TotalView uses rsh to start its remote server processes. This is
the same behavior as ch_p4 uses. If you configure ch_p4 to use a different
start-up mechanism from another process, you probably also need to
change the way that TotalView starts the servers.
For more information about tvdsvr and rsh, see “Setting Single-Process Server
Launch Options” on page 87. For more information about rsh, see “Using the
Single-Process Server Launch Command” on page 92.

IBM PE Debugging Tips

The following debugging tips apply only to IBM MPI (PE):

Avoid unwanted timeouts
Timeouts can occur if you place breakpoints that stop other processes
too soon after calling MPI_Init() or MPL_Init(). If you create “stop all”
breakpoints, the first process that gets to the breakpoint stops all the

CLI: dfocus g dkill

Debugging Parallel Applications Tips

136 Chapter 6: Setting Up MPI Debugging Sessions

other parallel processes that have not yet arrived at the breakpoint. This
can cause a timeout.
To turn the option off, select the Process Window Action Point >
Properties command while the line with the stop symbol is selected. After
the Properties Dialog Box appears, select the Process button in the When
Hit, Stop area, and also select the Plant in share group button.

Control the poe process
Even though the poe process continues under debugger control, do not
attempt to start, stop, or otherwise interact with it. Your parallel tasks
require that poe continues to run. For this reason, if poe is stopped,
TotalView automatically continues it when you continue any parallel task.
Avoid slow processes due to node saturation
If you try to debug a PE program in which more than three parallel tasks
run on a single node, the parallel tasks on each node can run noticeably
slower than they would run if you were not debugging them.
In general, the number of processes running on a node should be the
same as the number of processors in the node.
This becomes more noticeable as the number of tasks increases, and, in
some cases, the parallel tasks does not progress. This is because PE uses
the SIGALRM signal to implement communications operations, and AIX
requires that debuggers must intercept all signals. As the number of par-
allel tasks on a node increases, TotalView becomes saturated and can’t
keep up with the SIGALRM signals being sent, thus slowing the tasks.

CLI: dbarrier location –stop_when_hit process

TotalView Reference Guide: version 8.8 137

c
h
a
p
t
e
r

Setting Up Parallel
Debugging Sessions

7

This chapter explains how to set up TotalView parallel debugging ses-
sions for applications that use the parallel execution models that
TotalView supports and which do not use MPI.

If you are using TotalView Individual, all of your program’s processes must execute on
the computer on which you installed TotalView. In addition, TotalView Individual limits
you to no more than 16 processes and threads.

This chapter contains the following topics:

“Debugging OpenMP Applications” on page 138
“Using SLURM” on page 143
“Debugging IBM Cell Broadband Engine Programs” on page 144
“Debugging Cray XT Applications” on page 150
“Debugging Global Arrays Applications” on page 154
“Debugging PVM (Parallel Virtual Machine) and DPVM Applications” on
page 157
“Debugging Shared Memory (SHMEM) Code” on page 162
“Debugging UPC Programs” on page 163

This chapter also describes TotalView features that you can use with
most parallel models:

TotalView lets you decide which process you want it to attach to.
See “Attaching to Processes” on page 130.
See “Debugging Parallel Applications Tips” on page 130 for hints on
how to approach debugging parallel programs.

Debugging OpenMP Applications

138 Chapter 7: Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications

TotalView supports many OpenMP C and Fortran compilers. Supported
compilers and architectures are listed in the TotalView Platforms and Systems
Requirements document, which is on our Web site.

The following are some of the features that TotalView supports:

Source-level debugging of the original OpenMP code.
The ability to plant breakpoints throughout the OpenMP code, including
lines that are executed in parallel.
Visibility of OpenMP worker threads.
Access to SHARED and PRIVATE variables in OpenMP PARALLEL code.
A stack-back link token in worker threads’ stacks so that you can find
their master stack.
Access to OMP THREADPRIVATE data in code compiled by supported
compilers.

The code examples used in this section are included in the TotalView distri-
bution in the examples/omp_simplef file.

Topics in this section are:

“Debugging OpenMP Programs” on page 138
“Viewing OpenMP Private and Shared Variables” on page 139
“Viewing OpenMP THREADPRIVATE Common Blocks” on page 141
“Viewing the OpenMP Stack Parent Token Line” on page 143

Debugging OpenMP Programs

The way in which you debug OpenMP code is similar to the way you debug
multi-threaded code. The major differences are related to the way the
OpenMP compiler alters your code. These alterations include:

The most visible transformation is outlining. The compiler pulls the body
of a parallel region out of the original routine and places it in an outlined
routine. In some cases, the compiler generates multiple outlined routines
from a single parallel region. This allows multiple threads to execute the
parallel region.
The outlined routine’s name is based on the original routine’s name. In
most cases, the compiler adds a numeric suffix.
The compiler inserts calls to the OpenMP runtime library.
The compiler splits variables between the original routine and the out-
lined routine. Normally, shared variables reside in the master thread’s
original routine, and private variables reside in the outlined routine.
The master thread creates threads to share the workload. As the master
thread begins to execute a parallel region in the OpenMP code, it creates
the worker threads, dispatches them to the outlined routine, and then
calls the outlined routine itself.

Debugging OpenMP Applications

TotalView Reference Guide: version 8.8 139

About TotalView OpenMP Features
TotalView interprets the changes that the OpenMP compiler makes to your
code so that it can display your program in a coherent way. Here are some
things you should know:

The compiler can generate multiple outlined routines from a single paral-
lel region. This means that a single line of source code can generate mul-
tiple blocks of machine code inside different functions.
You can’t single step into or out of a parallel region. Instead, set a break-
point inside the parallel region and let the process run to it. After execu-
tion reaches the parallel region, you can single step in it.
OpenMP programs are multi-threaded programs, so the rules for debug-
ging multi-threaded programs apply.

Figure 98 on page 140 shows a sample OpenMP debugging session.

About OpenMP Platform Differences
In general, TotalView smooths out the differences that occur when you exe-
cute OpenMP platforms on different platforms. The following list discusses
these differences:

The OpenMP master thread has logical thread ID number 1. The OpenMP
worker threads have a logical thread ID number greater than 1.
Select or dive on the stack parent token line to view the original routine’s
stack frame in the OpenMP master thread.
When you stop the OpenMP worker threads in a PARALLEL DO outlined
routine, the stack backtrace shows the following call sequence:

Outlined routine called from the special stack parent token line.
The OpenMP runtime library called from.
The original routine (containing the parallel region).

Viewing OpenMP Private and Shared Variables

TotalView lets you view both OpenMP private and shared variables.

The compiler maintains OpenMP private variables in the outlined routine, and
treats them like local variables. See “Displaying Local Variables and Registers” on
page 294. In contrast, the compiler maintains OpenMP shared variables in
the master thread’s original routine stack frame.

TotalView lets you display shared variables through a Process Window
focused on the OpenMP master thread, or through one of the OpenMP
worker threads.

To see these variables, you must:

1 Select the outlined routine in the Stack Trace Pane, or select the original
routine stack frame in the OpenMP master thread.

Debugging OpenMP Applications

140 Chapter 7: Setting Up Parallel Debugging Sessions

2 Dive on the variable name, or select the View > Lookup Variable com-
mand. When prompted, enter the variable name.

TotalView opens a Variable Window that displays the value of the OpenMP
shared variable, as shown in Figure 99.

Shared variables reside in the OpenMP master thread’s stack. When dis-
playing shared variables in OpenMP worker threads, TotalView uses the
stack context of the OpenMP master thread to find the shared variable.

Figure 98: Sample OpenMP Debugging Session

 OpenMP master thread Original routine name
OpenMP worker threads Outlined routine name

 Manager threads Slave Thread Window
(don’t touch these threads)
Stack parent token (select or
dive to view master)

CLI: dprint
You will need to set your focus to the OpenMP master thread
first.

Debugging OpenMP Applications

TotalView Reference Guide: version 8.8 141

TotalView uses the OpenMP master thread’s context when displaying the
shared variable in a Variable Window.

You can also view OpenMP shared variables in the Stack Frame Pane by
selecting either of the following:

Original routine stack frame in the OpenMP master thread.
Stack parent token line in the Stack Trace Pane of OpenMP worker
threads.

Viewing OpenMP THREADPRIVATE Common Blocks

Some compilers implement OpenMP THREADPRIVATE common blocks by
using the thread local storage system facility. This facility stores a variable
declared in OpenMP THREADPRIVATE common blocks at different memory
locations in each thread in an OpenMP process. This allows the variable to
have different values in each thread. In contrast, IBM and other compilers
use the pthread key facility.

To view a variable in an OpenMP THREADPRIVATE common block, or the
OpenMP THREADPRIVATE common block:

1 In the Threads Tab of the Process Window, select the thread that contains
the private copy of the variable or common block you want to view.

2 In the Stack Trace Pane of the Process Window, select the stack frame that
lets you access the OpenMP THREADPRIVATE common block variable. You
can select either the outlined routine or the original routine for an
OpenMP master thread. You must, however, select the outlined routine
for an OpenMP worker thread.

Figure 99: OpenMP Shared Variable

Debugging OpenMP Applications

142 Chapter 7: Setting Up Parallel Debugging Sessions

3 From the Process Window, dive on the variable name or common block
name, or select the View > Lookup Variable command. When prompted,
enter the name of the variable or common block. You may need to
append an underscore character (_) after the common block name.

TotalView opens a Variable Window that displays the value of the variable
or common block for the selected thread.
See “Displaying Variables” on page 285 for more information on displaying
variables.

4 To view OpenMP THREADPRIVATE common blocks or variables across all
threads, use the Variable Window’s Show across > Threads command. See
“Displaying a Variable in all Processes or Threads” on page 347.

The following figure shows Variable Windows displaying OpenMP
THREADPRIVATE common blocks. Because the Variable Window has the
same thread context as the Process Window from which it was created, the
title bar patterns for the same thread match. TotalView displays the values
of the common block across all threads when you use the View > Show
Across > Threads command. (See Figure 100 on page 142.)

CLI: dprint

Figure 100: OpenMP
THREADPRIVATE
Common Block Variables

Using SLURM

TotalView Reference Guide: version 8.8 143

Viewing the OpenMP Stack Parent Token Line

TotalView inserts a special stack parent token line in the Stack Trace Pane
of OpenMP worker threads when they are stopped in an outlined routine.

When you select or dive on the stack parent token line, the Process Window
switches to the OpenMP master thread, allowing you to see the stack con-
text of the OpenMP worker thread’s routine. (See Figure 101.)

This stack context includes the OpenMP shared variables.

Using SLURM

Beginning at Version 7.1, TotalView supports the SLURM resource manager.
Here is some information copied from the SLURM website (http://
www.llnl.gov/linux/slurm/).

SLURM is an open-source resource manager designed for Linux clusters
of all sizes. It provides three key functions. First it allocates exclusive and/
or non-exclusive access to resources (computer nodes) to users for some
duration of time so they can perform work. Second, it provides a frame-
work for starting, executing, and monitoring work (typically a parallel job)
on a set of allocated nodes. Finally, it arbitrates conflicting requests for
resources by managing a queue of pending work.

SLURM is not a sophisticated batch system, but it does provide an Appli-
cations Programming Interface (API) for integration with external schedul-
ers such as the Maui Scheduler. While other resource managers do exist,
SLURM is unique in several respects:

Its source code is freely available under the GNU General Public
License.
It is designed to operate in a heterogeneous cluster with up to thou-
sands of nodes.
It is portable; written in C with a GNU autoconf configuration engine.
While initially written for Linux, other UNIX-like operating systems
should be easy porting targets. A plugin mechanism exists to support
various interconnects, authentication mechanisms, schedulers, etc.

Figure 101: OpenMP Stack
Parent Token Line

Debugging IBM Cell Broadband Engine Programs

144 Chapter 7: Setting Up Parallel Debugging Sessions

SLURM is highly tolerant of system failures, including failure of the node
executing its control functions.
It is simple enough for the motivated end user to understand its source
and add functionality.

Debugging IBM Cell Broadband
Engine Programs

The IBM Cell Broadband Engine is a heterogeneous computer having a PPE
(PowerPC Processor Element) and eight SPEs (Synergistic Processor Ele-
ments). Despite being a heterogeneous computer, the way you debug Cell
programs is nearly identical to the way you use TotalView to debug pro-
grams running on other architectures. (See Figure 102 on page 144.)

Of course, the way in which programs are loaded and execute mean there
are a few differences. For example, when a context is created on an SPU
(Synergistic Processor Unit), this context is not initialized; instead,
resources are simply allocated. This empty context is visible, but there are
no stack traces or source displays. There is no equivalent to this on other
architectures that TotalView supports. At a later time, the PPU (PowerPC
Processor Unit) will load an SPU image into this context and tell it to run.

In all cases, when you focus on a PPU thread, only the PPU address space is
visible. Similarly, when you focus on an SPU thread, the address space of
that SPU thread is visible.

TotalView looks at the executing program in a slightly different way. The fol-
lowing illustration shows how TotalView models the processes running on
the Cell.

TotalView separates the PPU address space from that of each SPU. The PPU
has its own image. In addition, it uses pthreads to launch SPU contexts.

Figure 102: Cell
Architecture

SPE
SPU

Local Store

SPE
SPU

Local Store

SPE
SPU

Local Store

SPE
SPU

Local Store

SPE
SPU

Local Store

SPE
SPU

Local Store

SPE
SPU

Local Store

SPE
SPU

Local Store

L2

PPE

L1 Cache

PPU

DMA

Cache

Debugging IBM Cell Broadband Engine Programs

TotalView Reference Guide: version 8.8 145

TotalView manages each context individually. This structuring lets you see
the PPU and each SPU separately. For example, you can switch from one to
another by diving on it in the Root Window.

The PPU

When debugging Cell programs, you need to be aware of the two different
architectures as they have different behaviors. The PPU is a standard IBM
Linux PowerPC. You interact with programs running on the PPU in exactly
the same way as you interact with standard Linux PowerPC programs.

As it is typical to run multiple Cell machines together, each PPU process
running the same program is placed in one share group. If more than one
executable is being run, each set of identical programs is placed in its own
share group. All of these share groups are contained within one control
group. The way in which TotalView groups processes and threads is identi-
cal to how it groups them on all other architectures.

Figure 103: A Cell Process

SPU address
space

SPU thread

SPU image
list

SPU.exe

SPU address
space

SPU thread

SPU image
list

SPU.exe

SPU address
space

SPU thread

SPU image
list

SPU7.exe

SPU address
space

SPU thread

SPU image
list

SPU1.exe

 . . .

PPU image
list

PPU exe

PPU address space

shared libsshared libsshared libsshared libsshared libsshared libsshared libs

SPU contexts

pthreadspthreadspthreadspthreads

Debugging IBM Cell Broadband Engine Programs

146 Chapter 7: Setting Up Parallel Debugging Sessions

The SPU

The programs running on the SPU are handled in a slightly different way. On
other architectures, a share group only contains processes. On the Cell,
TotalView places SPU threads that are running the same executable into
separate share groups. That is, on SPUs, a share group contains threads,
not processes. SPU share groups can contain SPU threads running on other
Cells, and these Cells can be within the same blade or within blades in a
cluster.

Cell Programing

While there are several ways to program the Cell, the primary method uses
the front-end PPU to load programs into the SPUs.

The SPU image can be embedded within the same executable that contains
the PPU executable or it can be contained within shared libraries.

PPU and SPU Executable Organization
Typically, a Cell executable file is organized in one of the following ways:

The PPU executable file contains all code that runs on the PPU and SPUs.
That is, the SPU executables are embedded within a PPU executable file
or shared library.
The PPU executable file only contains the code that runs on the PPU. The
SPU executable file is opened at runtime by a PPU thread using a libspe/
libspe2 function. The opened file is then loaded into the SPU using the
same functions that load an embedded SPU image.
A combination of the previous two methods.

In general, executing an SPU thread is a multi-step process. The PPU begins
by create an SPE context. This context can be thought of as being a thread
that is not running: it has an address space, registers, MFC state, and so
on. This thread has all memory, registers, and the like set to zero.

The second step is to load the executable into the SPE context. The final
step is to run the SPU executable.

PPU and SPU Executable Naming

If your SPU programs are embedded into your PPU program, TotalView
names the SPU program in the following way:

ppu.exe(spu.exe@offset)

ppu.exe is the name of the PPU image containing the SPU executable and off-
set is the file offset within ppu.exe. spu.exe is the name of the SPU executable.

If, however, the SPU executable is opened at runtime using libspe, the SPU
name is shown as:

spu.exe

Debugging IBM Cell Broadband Engine Programs

TotalView Reference Guide: version 8.8 147

Thread IDs
Another difference is the TotalView TID (Thread ID). An SPU thread has a
negative number. This differentiates it from the positive TIDs used for PPU
threads. Negative TIDs on other architectures have a different meaning. On
these other architectures, a negative TID represents a manager thread that
is performing an activity for which you have little interest. (See Figure 104.)

All SPU threads can be run synchronously or asynchronously. Like all
threads within TotalView, you can use the CLI to place SPU threads in a
named group and control these named groups separately.

Breakpoints

An SPU thread share group shares one characteristic of a process share
group: breakpoints can be shared across the threads. That is, when you
plant a breakpoint in one thread in the share group, TotalView can plant it
in all members. (See Figure 105 on page 148.))

Breakpoints can be in a pending state; that is, if TotalView cannot assign a
breakpoint to an address because an SPU executable is not yet loaded,
TotalView will wait until it can set the breakpoint.

When the PPU thread loads an SPU executable into an SPU context,
TotalView stops execution and asks if you want to set a breakpoint.
Figure 106 is an example of the question box that you will see.

If you would like to control whether this question is asked, use the follow-
ing CLI variables:

TV::ask_on_cell_spu_image_load
TV::cell_spu_image_ignore_regexp
TV::cell_spu_images_stop_regexp

These variables are described in Chapter 4, “TotalView Variables”, in the
TotalView Reference Guide.

To create a breakpoint in SPU threads, select Yes. Then select an SPU
thread. You can now navigate within this code and set breakpoints.

When you exit from your program or when you manually save breakpoints,
TotalView writes breakpoints for each SPU thread share group. The next

Figure 104: Root Window for a
Cell Program

Debugging IBM Cell Broadband Engine Programs

148 Chapter 7: Setting Up Parallel Debugging Sessions

time your program loads an SPU executable into an SPU context, these
breakpoints are read back in.

Figure 105: Action Point
Properties Dialog Box

Figure 106: Stop to Set
Breakpoints Question

Debugging IBM Cell Broadband Engine Programs

TotalView Reference Guide: version 8.8 149

Within the CLI your focus determines if the breakpoint is shared or
unshared. For example::

Registers, Unions, and Casting

SPU registers are 128 bits wide. In most cases, you'll be loading data into
the registers in different ways. For example, you might be using the SPU as
a vector processor and be loading four 32-bit values into a register.

TotalView defines a union that helps you see this data in seven different
ways, as is shown in the following figure.

This picture shows how TotalView displays register R0. TotalView defines
the data type of this register as union $spu_vec128. If you dive (double-
click) on a member in the union, TotalView shows the contents of the regis-
ter as if they were defined in this way. For example, diving in v4_float tells
TotalView to display this information as an array of four floating point num-
bers.

After diving on a union member, the displayed values can be edited and
stored back into memory.

If this union doesn't describe your data, you can tell TotalView to display it
in the way you want by altering the information in this window's Type field.
However, casting the value into a data type smaller than 128 bits pulls the
value from the preferred slot of the register that is appropriate for the
type’s size.

Focus Type of Breakpoint
dfocus t 1.-1 dbreakpoint main Unshared breakpoint
dfocus p 1.-1 dbreakpoint main Unshared breakpoint
dfocus d 1.-1 dbreakpoint main Shared breakpoint
dfocus g 1.-1 dbreakpoint main Shared breakpoint

Figure 107: Register Union

Debugging Cray XT Applications

150 Chapter 7: Setting Up Parallel Debugging Sessions

Debugging Cray XT Applications

The Cray XT Series is supported by the TotalView x86_64 distribution. This
section describes running applications on Cray XT Catamount. You should
be familiar with this information when running applications on a Cray XT
CNL. The primary difference between the two, and it is a big difference, is
that Cray XT CNL uses aprun to launch programs rather than yod.

Cray XT Catamount

On the Cray XT Catamount, all jobs running on compute nodes are started
with the yod starter program. These jobs do not have to be MPI jobs.
Debugging a program started with yod is similar to debugging any program
using a starter program. In general, you would type:

totalview totalview_args yod –a yod_args

For example:

totalview yod –a –np 4 ./my_prog

Here are some things you should know:

tvdsvr_rs processes are started for your compute nodes. (This is a process
started by TotalView on a remote note that communicates back with
TotalView. For more information on this server, see Chapter 4.) yod will
then pass information to TotalView, which will then start the servers. If this
does not occur, consult your yod documentation.
There may be more than one tvdsvr_rs process. TotalView will create one
tvdsvr_rs process for each RS_DBG_CLIENTS_PER_SERVER or 64 compute
nodes.
To attach to a running program, attach to the instance of yod that is
controlling it using normal TotalView mechanisms. TotalView will auto-
matically attach to all compute node tasks that are part of the job.
TotalView cannot know how many compute nodes are available, so each
server assumes that it will be serving 64 compute nodes, and asks for a
64-node license. You can override this default by using the
–nodes_allowed tvdsvr command-line option.
If you wish to use a small license (that is, a license for less than 64 pro-
cessors), you must use the –nodes_allowed tvdsvr command-line option.
The argument to this option specifies how many nodes the server sup-
ports and how many licenses it needs. Because this is a tvdsvr_rs com-
mand-line option, you must add it into the server launch string.
You can also use the –nodes_allowed server launch string option along with
the RS_DBG_CLIENTS_PER_SERVER environment variable to increase the
number of compute nodes each server will serve (and the number of Cray
licences it asks for). However, we do not recommend that you set this
server launch string option to a value greater than 256. (Note that you only
need set this variable if RS_DBG_CLIENTS_PER_SERVER is greater than 64.)

Debugging Cray XT Applications

TotalView Reference Guide: version 8.8 151

For information on setting server launch strings, see “Setting Up and Start-
ing the TotalView Server” on page 85.

While debugging, you must also have the FlexLM license server running. TotalView uses
this server to verify that you are using licensed software. However, this server is not
related to the servers that TotalView launches when you are debugging your program.

Configuring TotalView
When configuring your Cray XT system for use with the TotalView, you must:

Mount user home directories on all service nodes that you will use while
debugging.
(Optional) Enable passwordless ssh on all service nodes that you will use
while debugging. In most cases, your system administrator will have en-
abled your system so that it uses ssh instead or rsh. If passwordless ssh
is not enabled, you will be asked to enter a password each time a pro-
cess is launched on a node.
(Optional) Automatically set RS_DBG_CLIENTS_PER_SERVER and
–nodes_allowed.

On Cray XT systems setting a –nodes_allowed command-line option to 64
will not work. Instead, you should configure TotalView to use
RS_DBG_CLIENTS_PER_SERVER and –nodes_allowed to make best use of the
cluster and TotalView licenses.

TotalView administrators can set installation preferences by editing (or cre-
ating) the $TVROOT/linux-x86-64/lib/.tvdrc file. Here are two simple scenar-
ios

If you only have one TotalView license and that license is for less than 64
processors then a server launch string like this would be best:
dset -set_as_default TV::server_launch_string \

{%C %R -n "%B/tvdsvr%K -working_directory %D \
-callback %L \
-nodes_allowed maximum_processor_license \
-set_pw %P -verbosity %V %F"}

where maximum_processor_license is the processor count for your TotalView
license.
If you will be running TotalView on a cluster where the ratio of service
nodes to compute nodes is less than 1:64, you should use a server
launch string. For example:
dset -set_as_default TV::server_launch_string \

{%C %R -n "%B/tvdsvr%K -working_directory %D \
-callback %L \
-nodes_allowed ${RS_DBG_CLIENTS_PER_SERVER-64} \
-set_pw %P -verbosity %V %F"}

You will need to set the RS_DBG_CLIENTS_PER_SERVER environment vari-
able before submitting all jobs where a service node-to-compute node
ration of 1:64 is not possible. You should also set
RS_DBG_CLIENTS_PER_SERVER to the number of compute nodes served
by each service node. For example, if you have a service-to-node ratio of
1:128, set this variable to 128.

Debugging Cray XT Applications

152 Chapter 7: Setting Up Parallel Debugging Sessions

The TV::server_launch_string variable is used for both Cray XT3 and Linux x86-64.
This means that if you will also be using this TotalView installation on other linux-
x86-64 machines, you should not set the TV::server_launch_string variable in your
global .tvdrc.

Using TotalView

As part of launching an application on a compute node, TotalView will
launch a server program on your login node using ssh. As with any ssh ses-
sion, authentication is required. We recommend that you enable ssh with-
out a pass phrase.

TotalView is typically run interactively. If your site has not designated any
compute nodes for interactive processing, use the PBS Pro qsub -I interac-
tive mode. This mode is described in the Cray XT3 Programming Environment
User’s Guide.

If TotalView is installed on your system, use the following command to load
it into your user environment:

module load xt-totalview

You can now use the following command to start the CLI:

totalviewcli yod [-a argument_list] application_name

Here’s the command that starts the GUI:

totalviewcli yod [-a argument_list] application_name

The following example shows how you can debug a program named a.out:

% qsub -I -l size=4
qsub: waiting for job 14448.nid00003 to start
qsub: job 14448.nid00003 ready

DISPLAY is user1:0.0
Linux perch 2.4.21-0-sles9-ss-lustre #2 Fri Apr 29
17:14:15 PDT 2005 x86_64 x86_64 x86_64 GNU/Linux
/ufs/home/users/user1

% module load xt-totalview
% cd working_directory
% totalview yod -a -sz 4 a.out

Cray XT CNL

Cray XT CNL applications are similar to those on Cray XT Catamount. The
primary difference is that CNL applications are launched using aprun rather
than yod.

Most, perhaps all, programs are launched using a batch queueing system
such as PBS, Moab, and so on. While this is independent from TotalView,
you will need to do queue up for an interactive session. For example:

qsub -I -sz=size

Debugging SiCortex Applications

TotalView Reference Guide: version 8.8 153

Here is an example of how you would start a Cray XT CNL debugging session:

totalview aprun -a -n4 a.out

TotalView is not able to stop your program before it calls MPI_Init(). While
this is typically at the beginning of main(), the actually location depends on
how you’ve written the program. This means that if you set a breakpoint
before the MPI_Init() call, TotalView ignores it because the statement upon
which you set the breakpoint will have already executed.

Debugging SiCortex Applications

TotalView runs as a cross-debugger within the SiCortex-MIPS Linux environ-
ment. The SiCortex version of TotalView is a 64-bit application and must
run on an x86-64 system running a 64-bit kernel. All debugging must use
the remote features of TotalView.

Features that are not implemented in this version are:

Memory debugging
OpenMP
SHMEM
PVM
Debugging 32-bit executables
Watchpoints
Compiled EVAL points

Installation Notes

The default location into which the TotalView installer places TotalView
binaries is
/opt/toolworks. In addition, you must use this same path when you install it
into the file system that will be mounted on the MIPS nodes.

For more information on installing TotalView, consult the “TotalView Instal-
lation Guide,” which is located at http://www.totalviewtech.com/Documen-
tation/.

Using TotalView on SiCortex

TotalView must be able to execute a command on the target system from
the development host. By default, this version uses the ssh -x command.
However, we suggest that you set up ssh so that it lets you execute com-
mands without requiring a password.

Your program’s executable file must be visible from both the development
host and the target system. Do this by placing the executables in a direc-
tory that is visible on both machines through the same path. Having the

Debugging Global Arrays Applications

154 Chapter 7: Setting Up Parallel Debugging Sessions

executable visible in separate directories that are accessed through the
same path on both machines will also work. However, if you're using the
cross development compilers, you'll probably want the same copy of the
executable visible from both machines anyway.

The SiCortex version of TotalView does not use the same naming conven-
tions as is used on other versions. Instead, the command has an sc prefix.
For example, use the sctv8 or sctotalview commands instead of tv8 or
totalview8 to invoke the GUI version. Use sctv8cli or sctotalviewcli instead
of tv8cli or totalviewcli to invoke the CLI.

The commands are located within the following directory:

install_path/toolworks/totalview.version/bin

If this directory is in your PATH, here’s how to start the TotalView GUI:

sctv8 -r remote_host executable_path -a arguments

When you use the –-remote command-line option and the program’s name
is srun, TotalView makes a local copy of srun using scp. It also substitutes
the name of the local copy for the program name. This local copy is
deleted when TotalView exits.

MPI Debugging

TotalView normally requires that the executable be visible through the
same path on the host machine and target machines. In addition, TotalView
must debug the MIPS version of srun. TotalView will not let you debug pro-
grams invoked using the x86-64 version of srun. We recommend that you
copy the MIPS version of srun into the directory with your executables,
then invoke TotalView as follows:

sctv8 -r SiCortex_node ./srun -a srun_arguments

You can also run MPI programs by entering information into the File > New
Program dialog box. Within the Parallel tab, select SiCortex within the pull-
down list. (This is the preferred way to start MPI programs from within
TotalView.) When using this dialog box, you must be sure that TotalView
finds the MIPS version of srun.

Debugging Global Arrays Applications

The following paragraphs, which are copied from the Global Arrays home
site (http://www.emsl.pnl.gov/docs/global/ga.html), describe the global
arrays environment:

The Global Arrays (GA) toolkit provides a shared memory style program-
ming environment in the context of distributed array data structures (called
“global arrays”). From the user perspective, a global array can be used as if

Debugging Global Arrays Applications

TotalView Reference Guide: version 8.8 155

it was stored in shared memory. All details of the data distribution, address-
ing, and data access are encapsulated in the global array objects. Informa-
tion about the actual data distribution and locality can be easily obtained
and taken advantage of whenever data locality is important. The primary
target architectures for which GA was developed are massively-parallel dis-
tributed-memory and scalable shared-memory systems.

GA divides logically shared data structures into “local” and “remote” por-
tions. It recognizes variable data transfer costs required to access the
data depending on the proximity attributes. A local portion of the shared
memory is assumed to be faster to access and the remainder (remote por-
tion) is considered slower to access. These differences do not hinder the
ease-of-use since the library provides uniform access mechanisms for all
the shared data regardless where the referenced data is located. In addi-
tion, any processes can access a local portion of the shared data directly/
in-place like any other data in process local memory. Access to other por-
tions of the shared data must be done through the GA library calls.

GA was designed to complement rather than substitute for the message-
passing model, and it allows the user to combine shared-memory and
message-passing styles of programming in the same program. GA inherits
an execution environment from a message-passing library (w.r.t. pro-
cesses, file descriptors etc.) that started the parallel program.

TotalView supports Global Arrays on the Intel IA-64 platform. You debug a
Global Arrays program in basically the same way that you debug any other
multi-process program. The one difference is that you will use the Tools >
Global Arrays command to display information about your global data.

The global arrays environment has a few unique attributes. Using TotalView,
you can:

Display a list of a program's global arrays.
Dive from this list of global variables to see the contents of a global array
in C or Fortran format.
Cast the data so that TotalView interprets data as a global array handle.
This means that TotalView displays the information as a global array.
Specifically, casting to $GA forces the Fortran interpretation; casting to
$ga forces the C interpretation; and casting to $Ga tells TotalView to use
the language in the current context.

Within a Variable Window, the commands that operate on a local array, such
as slicing, filtering, obtaining statistics, and visualization, also operate on
global arrays.

The command you use to start TotalView depends on your operating sys-
tem. For example, the following command starts TotalView on a program
that is invoked using prun and which uses three processes:

totalview prun -a -N 3 boltz.x

Before your program starts parallel execution, TotalView asks if you want to
stop the job. (See Figure 108 on page 156.)

Choose Yes if you want to set breakpoints or inspect the program before it
begins execution.

Debugging Global Arrays Applications

156 Chapter 7: Setting Up Parallel Debugging Sessions

After your program hits a breakpoint, use the Tools > Global Arrays com-
mand to begin inspecting your program’s global arrays.TotalView displays
the following window.

The arrays named in this window are displayed using their C and Fortran
type names. Diving on the line that contains the type definition tells
TotalView to display Variable Windows that contains information about that
array.

After TotalView displays this information, you can use other standard com-
mands and operations on the array. For example, you can use the slice and
filter operations and the commands that visualize, obtain statistics, and
show the nodes from which the data was obtained.

If you inadvertently dive on a global array variable from the Process Window,
TotalView does not know that it is a component of a global array. If, however,
you do dive on the variable, you can cast the variable into a global array
using either $ga for a C Language cast or $GA for a Fortran cast.

Figure 108: Question Window
for Global Arrays
Program

CLI: dga

Figure 109: Tools > Global
Arrays Window

Debugging PVM (Parallel Virtual Machine) and DPVM Applications

TotalView Reference Guide: version 8.8 157

Debugging PVM (Parallel Virtual
Machine) and DPVM Applications

You can debug applications that use the Parallel Virtual Machine (PVM)
library or the HP Alpha Tru64 UNIX Parallel Virtual Machine (DPVM) library
with TotalView on some platforms. TotalView supports ORNL PVM Version
3.4.4 on all platforms and DPVM Version 1.9 or later on the HP Alpha plat-
form.

See the TotalView Platforms document for the most up-to-date information regarding
your PVM or DPVM software.

For tips on debugging parallel applications, see “Debugging Parallel Applica-
tions Tips” on page 130.

Topics in this section are:

“Supporting Multiple Sessions” on page 157
“Setting Up ORNL PVM Debugging” on page 158
“Starting an ORNL PVM Session” on page 158
“Starting a DPVM Session” on page 159
“Automatically Acquiring PVM/DPVM Processes” on page 160
“Attaching to PVM/DPVM Tasks” on page 161

Supporting Multiple Sessions

When you debug a PVM or DPVM application, TotalView becomes a PVM
tasker. This lets it establish a debugging context for your session. You can
do the following:

You can run a TotalView PVM or DPVM debugging session for a user and
for an architecture; that is, different users can’t interfere with each other
on the same computer or same computer architecture.
One user can start TotalView to debug the same PVM or DPVM application
on different computer architectures. However, a single user can’t have
multiple instances of TotalView debugging the same PVM or DPVM ses-
sion on a single computer architecture.
For example, if you start a PVM session on Sun 5 and HP Alpha comput-
ers, you must start two TotalView sessions: one on the Sun 5 computer to
debug the Sun 5 portion of the PVM session, and one on the HP Alpha
computer to debug the HP Alpha portion of the PVM session. These two
TotalView sessions are separate and don’t interfere with one another.
In one TotalView session, you can run either a PVM application or a
DPVM application, but not both. However, if you run TotalView on an HP
Alpha, you can have two TotalView sessions: one debugging PVM and
one debugging DPVM.

Debugging PVM (Parallel Virtual Machine) and DPVM Applications

158 Chapter 7: Setting Up Parallel Debugging Sessions

Setting Up ORNL PVM Debugging

To enable PVM, create a symbolic link from the PVM bin directory (which is
usually $HOME/pvm3/bin/$PVM_ARCH/tvdsvr) to the TotalView Server
(tvdsvr). With this link in place, TotalView invokes pvm_spawn() to spawn
the tvdsvr tasks.

For example, if tvdsvr is installed in the /opt/totalview/bin directory, enter
the following command:

ln -s /opt/totalview/bin/tvdsvr \
$HOME/pvm3/bin/$PVM_ARCH/tvdsvr

If the symbolic link doesn’t exist, TotalView can’t spawn tvdsvr. If TotalView
can’t spawn tvdsvr, it displays the following error:

Error spawning TotalView Debugger Server: No such file

Starting an ORNL PVM Session

Start the ORNL PVM daemon process before you start TotalView. See the
ORNL PVM documentation for information about the PVM daemon process
and console program. The procedure for starting an ORNL PVM application
is as follows:

1 Use the pvm command to start a PVM console session—this command
starts the PVM daemon.
If PVM isn’t running when you start TotalView (with PVM support enabled),
TotalView exits with the following message:
Fatal error: Error enrolling as PVM task:
pvm error

2 If your application uses groups, start the pvmgs process before starting
TotalView.
PVM groups are unrelated to TotalView process groups. For information
about TotalView process groups, see “Examining Groups” on page 237.

3 You can use the –pvm command-line option to the totalview command.
As an alternative, you can set the TV::pvm variable in a startup file.
The command-line options override the CLI variable. For more informa-
tion, see “TotalView Command Syntax” in the TotalView Reference Guide.

4 Set the TotalView directory search path to include the PVM directories.
This directory list must include those needed to find both executable and
source files. The directories you use can vary, but should always contain
the current directory and your home directory.
You can set the directory search path using either the EXECUTABLE_PATH
variable or the File > Search Path command. See “Setting Search Paths” on
page 73 for more information.
For example, to debug the PVM examples, you can place the following
directories in your search path:
.
$HOME
$PVM_ROOT/xep
$PVM_ROOT/xep/$PVM_ARCH
$PVM_ROOT/src

Debugging PVM (Parallel Virtual Machine) and DPVM Applications

TotalView Reference Guide: version 8.8 159

$PVM_ROOT/src/$PVM_ARCH
$PVM_ROOT/bin/$PVM_ARCH
$PVM_ROOT/examples
$PVM_ROOT/examples/$PVM_ARCH
$PVM_ROOT/gexamples
$PVM_ROOT/gexamples/$PVM_ARCH

5 Verify that the action taken by TotalView for the SIGTERM signal is appro-
priate. (You can examine the current action by using the Process Window
File > Signals command. See “Handling Signals” on page 71 for more infor-
mation.)
PVM uses the SIGTERM signal to terminate processes. Because TotalView
stops a process when the process receives a SIGTERM, the process is not
terminated. If you want the PVM process to terminate, set the action for
the SIGTERM signal to Resend.

TotalView will automatically acquire your application’s PVM processes. For
more information, see “Automatically Acquiring PVM/DPVM Processes” on
page 160.

Starting a DPVM Session

Starting a DPVM debugging session is similar to starting any other
TotalView debugging session. The only additional requirement is that you
must start the DPVM daemon before you start TotalView. See the DPVM
documentation for information about the DPVM daemon and its console
program. The procedure for starting a DPVM application is as follows

1 Use the dpvm command to start a DPVM console session; starting the
session also starts the DPVM daemon.
If DPVM isn’t running when you start TotalView (with DPVM support
enabled), TotalView displays the following error message before it exits:
Fatal error: Error enrolling as DPVM task: dpvm error

2 Enable DPVM support either by using the TV::dpvm CLI variable or by
using the –dpvm command-line option to the totalview command.
The command-line options override the TV:dpvm command variable. For
more information on the totalview command, see “TotalView Command Syn-
tax” in the TotalView Reference Guide.

3 Verify that the default action taken by TotalView for the SIGTERM signal is
appropriate. (You can examine the default actions with the Process
Window File > Signals command in TotalView. See “Handling Signals” on
page 71 for more information.)
DPVM uses the SIGTERM signal to terminate processes. Because
TotalView stops a process when the process receives a SIGTERM, the pro-
cess is not terminated. If you want the DPVM process to terminate, set
the action for the SIGTERM signal to Resend.

If you enable PVM support using the TV::pvm variable and you need to use
DPVM, you must use both –no_pvm and –dpvm command-line options
when you start TotalView. Similarly, when enabling DPVM support using the
TV::dpvm variable, you must use the –no_dpvm and –pvm command-line
options.

Debugging PVM (Parallel Virtual Machine) and DPVM Applications

160 Chapter 7: Setting Up Parallel Debugging Sessions

You cannot use CLI variables to start both PVM and DPVM.

Automatically Acquiring PVM/DPVM Processes

When you start TotalView as part of a PVM or DPVM debugging session, it
takes the following actions:

TotalView makes sure that no other PVM or DPVM taskers are running. If
TotalView finds a tasker on a host that it is debugging, it displays the fol-
lowing message and then exits:
Fatal error: A PVM tasker is already running
on host 'host'
TotalView finds all the hosts in the PVM or DPVM configuration. Using the
pvm_spawn() call, TotalView starts a TotalView Server (tvdsvr) on each re-
mote host that has the same architecture type as the host TotalView is
running on. It tells you it has started a debugger server by displaying the
following message:
Spawning TotalView Debugger Server onto PVM
host 'host'

If you add a host with a compatible computer architecture to your PVM or
DPVM debugging session after you start TotalView, it automatically starts a
debugger server on that host.

After all debugger servers are running, TotalView intercepts every PVM or
DPVM task created with the pvm_spawn() call on hosts that are part of the
debugging session. If a PVM or DPVM task is created on a host with a differ-
ent computer architecture, TotalView ignores that task.

When TotalView receives a PVM or DPVM tasker event, the following actions
occur:

1 TotalView reads the symbol table of the spawned executable.
2 If a saved breakpoint file for the executable exists and you have enabled

automatic loading of breakpoints, TotalView loads breakpoints for the
process.

3 TotalView asks if you want to stop the process before it enters the main()
routine.
If you answer Yes, TotalView stops the process before it enters main() (that
is, before it executes any user code). This allows you to set breakpoints in
the spawned process before any user code executes. On most comput-
ers, TotalView stops a process in the start() routine of the crt0.o module
if it is statically linked. If the process is dynamically linked, TotalView stops
it just after it finishes running the dynamic linker. Because the Process
Window displays assembler instructions, you need to use the View >
Lookup Function command to display the source code for main().

For more information on this command, see “Finding the Source Code for
Functions” on page 227.

CLI: dlist function-name

Debugging PVM (Parallel Virtual Machine) and DPVM Applications

TotalView Reference Guide: version 8.8 161

Attaching to PVM/DPVM Tasks

You can attach to a PVM or DPVM task if the following are true:

The computer architecture on which the task is running is the same as
the computer architecture upon which TotalView is running.
The task must be created. (This is indicated when flag 4 is set in the PVM
Tasks and Configuration Window.)
The task must not be a PVM tasker. If flag 400 is clear in the PVM Tasks
and Configuration Window, the process is a tasker.
The executable name must be known. If the executable name is listed as a
dash (–), TotalView cannot determine the name of the executable. (This
can occur if a task was not created with the pvm_spawn() call.)

To attach to a PVM or DPVM task:

1 Select the Tools > PVM Tasks command from the Root Window.
TotalView responds with the PVM Tasks Window. (See Figure 110.)

This window displays current information about PVM tasks and hosts—
TotalView automatically updates this information as it receives events
from PVM.
Since PVM doesn’t always generate an event that allows TotalView to
update this window, use the Window > Update command to ensure that
you are seeing the most current information.
For example, you can attach to the tasks named xep and mtile in the pre-
ceding figure because flag 4 is set. In contrast, you cannot attach to the
– (dash) executables and tvdsvr, because flag 400 is set.

2 Dive on a task entry that meets the criteria for attaching to tasks.
TotalView attaches to the task.

Figure 110: PVM Tasks and
Configuration Window

Debugging Shared Memory (SHMEM) Code

162 Chapter 7: Setting Up Parallel Debugging Sessions

3 If the task to which you attached has related tasks that can be debugged,
TotalView asks if you want to attach to these related tasks. If you answer
Yes, TotalView attaches to them. If you answer No, it only attaches to the
task you dove on.

After attaching to a task, TotalView looks for attached tasks that are related
to this task; if there are related tasks, TotalView places them in the same
control group. If TotalView is already attached to a task you dove on, it sim-
ply opens and raises the Process Window for the task.

About Reserved Message Tags
TotalView uses PVM message tags in the range 0xDEB0 through 0xDEBF to
communicate with PVM daemons and the TotalView Server. Avoid sending
messages that use these reserved tags.

Cleaning Up Processes
The pvmgs process registers its task ID in the PVM database. If the pvmgs
process terminates, the pvm_joingroup() routine hangs because PVM won’t
clean up the database. If this happens, you must manually terminate the
program and then restart the PVM daemon.

TotalView attempts to clean up the tvdsvr processes that also act as
taskers. If some of these processes do not terminate, you must manually
terminate them.

Debugging Shared Memory
(SHMEM) Code

TotalView supports programs using the distributed memory access Shared
Memory (SHMEM) library on Quadrics RMS systems and SGI Altix systems.
The SHMEM library allows processes to read and write data stored in the
memory of other processes. This library also provides collective opera-
tions.

Debugging a SHMEM RMS or SGI Altix program is no different than debug-
ging any other program that uses a starter program. For example:

totalview srun -a my_program

Debugging UPC Programs

TotalView Reference Guide: version 8.8 163

Debugging UPC Programs

TotalView lets you debug UPC programs that were compiled using the HP
Compaq Alpha UPC 2.0 and the Intrepid (SGI gcc UPC) compilers. This sec-
tion only discusses the UPC-specific features of TotalView. It is not an intro-
duction to the UPC Language. For an introduction to the UPC language, go
to http://www.gwu.edu/~upc.

When debugging UPC code, TotalView requires help from a UPC assistant library that
your compiler vendor provides. You need to include the location of this library in your
LD_LIBRARY_PATH environment variable. TotalView Technologies also provides assis-
tants that you can use.

Topics in this section are:

“Invoking TotalView” on page 163
“Viewing Shared Objects” on page 163
“Displaying Pointer to Shared Variables” on page 165

Invoking TotalView

The way in which you invoke TotalView on a UPC program is straight-for-
ward. However, this procedure depends on the computer upon which the
program is executing:

When running on an SGI system using the gcc UPC compiler, invoke
TotalView on your UPC program in the same way as you would invoke it
on most other programs; for example:
totalview prog_upc -a prog_upc_args
When running on Linux and HP Compaq SC computers, debug UPC code
in the same way that you would debug other kinds of parallel code; for
example:
totalview prun -a -n node_count prog_upc prog_upc_args

Viewing Shared Objects

TotalView displays UPC shared objects, and fetches data from the UPC
thread with which it has an affinity. For example, TotalView always fetches
shared scalar variables from thread 0.

The upper-left screen in Figure 111 on page 164 displays elements of a
large shared array. You can manipulate and examine shared arrays the same
as any other array. For example, you can slice, filter, obtain statistical infor-
mation, and so on. (For more information on displaying array data, see
Chapter 15, “Examining Arrays,” on page 335.) The lower-right screen shows
a slice of this array.

Debugging UPC Programs

164 Chapter 7: Setting Up Parallel Debugging Sessions

In this figure, TotalView displays the value of a pointer-to-shared variable
whose target is the array in the Shared Address area. As usual, the address
in the process appears in the top left of the display.

Since the array is shared, it has an additional property: the element’s affin-
ity. You can display this information if you right-click your mouse on the
header and tell TotalView to display Nodes.(See Figure 112.)

You can also use the Tools > Visualize Distribution command to visualize
this array. For more information on visualization, see “Visualizing Array Data”
on page 185.

Figure 111: A Sliced UPC
Array

Figure 112: UPC Variable
Window Showing Nodes

Debugging UPC Programs

TotalView Reference Guide: version 8.8 165

Displaying Pointer to Shared Variables

TotalView understands pointer-to-shared data and displays the compo-
nents of the data, as well as the target of the pointer to shared variables.
For example,Figure 113 shows this data being displayed:

In this figure, notice the following:

Because the Type field shows the full type name, TotalView is telling you
that this is a pointer to a shared int with a block size of 10.
In this figure, TotalView also displays the upc_threadof ("T0"), the
upc_phaseof ("P0"), and the upc_addrfield (0x0x10010ec4) components of
this variable.

In the same way that TotalView normally shows the target of a pointer vari-
able, it also shows the target of a UPC pointer variable. When dereferencing
a UPC pointer, TotalView fetches the target of the pointer from the UPC
thread with which the pointer has affinity.

You can update the pointer by selecting the pointer value and editing the
thread, phase, or address values. If the phase is corrupt, you’ll see some-
thing like the following in the Value area:

T0;P6;0x3ffc0003b00 <Bad phase [max 4]> ->
0xc0003c80 (-1073726336)

In this example, the pointer is invalid because the phase is outside the legal
range. TotalView displays a similar message if the thread is invalid.

Since the pointer itself is not shared, you can use the TView > Show Across
commands to display the value from each of the UPC threads. (See
Figure 114 on page 166.)

Figure 113: A Pointer to a
Shared Variable

Debugging UPC Programs

166 Chapter 7: Setting Up Parallel Debugging Sessions

Figure 114: Pointer to a
Shared Variable

TotalView Users Guide: version 8.8 167

Part III: Using the GUI

The two chapters in this part of the users guide contains information about
using the TotalView GUI.

Chapter 8: Using TotalView Windows
Describes using the mouse and the fundamental TotalView
windows.

Chapter 9: Visualizing Programs and Data
Some TotalView commands and tools are only useful if
you’re using the GUI. Here you will find information on the
Call Graph and Visualizer.

168

TotalView Users Guide: version 8.8 169

c
h
a
p
t
e
r

Using TotalView
Windows

8

This chapter introduces you to the most important TotalView win-
dows and the mechanics of using the GUI. The topics in this chapter
are as follows:

“Using Mouse Buttons” on page 169
“Using the Root Window” on page 170
“Using the Process Window” on page 173
“Viewing the Assembler Version of Your Code” on page 175
“Diving into Objects” on page 177
“Resizing and Positioning Windows and Dialog Boxes” on page 179
“Editing Text” on page 180
“Saving the Contents of Windows” on page 181

Using Mouse Buttons

TotalView uses the buttons on your three-button mouse as follows:

Button Action Purpose How to Use It
Left Select Selects or edits object.

Scrolls in windows and
panes.

Move the cursor over the object and
click the button.

Middle Paste Writes information
previously copied or cut
into the clipboard.

Move the cursor to where you will be
inserting the information and click the
button. Not all windows support
pasting.

Using the Root Window

170 Chapter 8: Using TotalView Windows

In most cases, a single-click selects what’s under the cursor and a double-
click dives on the object. However, if the field is editable, TotalView goes
into its edit mode, in which you can alter the selected item's value.

In some places such as the Stack Trace Pane, selecting a line tells TotalView
to perform an action. In this pane, TotalView dives on the selected routine.
(In this case, diving means that TotalView finds the selected routine and
shows it in the Source Pane.)

In the line number area of the Source Pane, a left mouse click sets a break-
point at that line. TotalView shows you that it has set a breakpoint by dis-
playing a icon instead of a line number.

Selecting the icon a second time deletes the breakpoint. If you
change any of the breakpoint’s properties or if you’ve created an eval point
(indicated by an icon), selecting the icon disables it. For more infor-
mation on breakpoints and eval points, see Chapter 16, “Setting
Action Points,” on page 351.

Using the Root Window

The Root Window appears when you start TotalView. If you type a program
name immediately after the totalview command, TotalView also opens a
Process Window that contains the program’s source code. If you do not
enter a program name when you start TotalView, TotalView also displays its
File > New Program dialog box. Use this dialog box to enter a program’s
name and information needed to execute that program.

The Root Window displays a list of all the processes and threads being
debugged. Initially—that is, before your program begins executing—the
Root Window just contains the name of the program being debugged. As
your program creates processes and threads, TotalView adds them to this
list. Associated with each is a name, location (if a remote process), process
ID, status, and a list of executing threads for each process. It also shows
the thread ID, status, and the routine being executed in each thread.

Dive Displays more
information or replaces
window contents.

Move the cursor over an object, then
click the middle-mouse button.

Right Context
menu

Displays a menu with
commonly used
commands.

Move the cursor over an object and
click the button.
Most windows and panes have
context menus; dialog boxes do not
have context menus.

Button Action Purpose How to Use It

Using the Root Window

TotalView Users Guide: version 8.8 171

Figure 115 shows the Root Window for an executing multi-threaded multi-
process program.

When debugging a remote process, TotalView displays the host name on
which the process is running within the Process Window and in the Root
Window. In Figure 116, the processes are running on intrepid and on
localhost. This figure also describes the contents of the columns in this
window.

When you dive on a line in this window, TotalView displays the source for
that process or thread in a Process Window.

Figure 115: Root Window

Figure 116: Root Window
Showing Two Host
Computers

Using the Root Window

172 Chapter 8: Using TotalView Windows

TotalView can display process and thread data linearly and hierarchically.
(See Figure 117.)

Selecting the hierarchy toggle button () changes the view from linear to
hierarchical view. When data is being displayed hierarchically, you can per-
form the following additional operations:

Selectively display information using the + or – indicators. The View >
Expand All and View > Compress All commands let you open and close
all of this window’s hierarchies.
Sort a column by clicking on a column header.

The hierarchical view lets you group similar information. For example, if you
sort the information by clicking the Status header, TotalView groups all
attached processes by their status. This lets you see, for example, which
threads are held, at a breakpoint, and so on. When information is aggre-
gated (that is grouped) like this, you can also display information selec-
tively. (See Figure 118 on page 173.)

TotalView displays all of your program’s processes and threads. You can
change this using the following commands:

View > Display Managers: When multi-process and multi-threaded pro-
grams run, the operating system often creates threads whose sole func-
tion is to manage your program’s processes. In addition, many HPC pro-
grams use a starter process. Usually, you are not interested in these
threads and processes. This command lets you remove them from the

Figure 117: Two Views of the
Root Window

Using the Process Window

TotalView Users Guide: version 8.8 173

display. In most cases, this is what you want to do as you will not be de-
bugging these processes or threads.

If you are running TotalView Team, a manager process uses a token in exactly the same
way a user process. For example, if you are running a 32 process MPI job that is
invoked using mpirun, you will need 33 tokens.

View > Display Exited Threads: Tracking when processes stop and start
executing in a multi-process, multi-threaded enviroment can be challeng-
ing. Selecting this command tells TotalView to display threads after
they’ve exited. While this clutters your display with information about
threads that are no longer executing, it can sometimes be helpful in trying
to track down some problems. You probably don’t want to see these
threads in the listing. However, you can tell TotalView to show them at
anytime. That is, TotalView remembers them so that toggling this com-
mand shows this information.

Using the Process Window

The Process Window (see Figure 119 on page 174) contains the code for the
process or thread that you’re debugging, as well as other related informa-
tion. This window contains panes of information. The large scrolling list in
the middle of the Process Window is the Source Pane. (The contents of
these panes are discussed later in this section.)

As you examine the Process Window, notice the following:

The thread ID shown in the Root Window and in the process’s Threads
Tab with the Tabs Pane is the logical thread ID (TID) assigned by
TotalView and the system-assigned thread ID (SYSTID). On systems such
as HP Alpha Tru64 UNIX, where the TID and SYSTID values are the same,
TotalView displays only the TID value.

Figure 118: Sorted and
Aggregated Root Window

Using the Process Window

174 Chapter 8: Using TotalView Windows

In other windows, TotalView uses the pid.tid value to identify a process’s
threads.
The Threads Tab shows the threads that currently exist in a process. When
you select a different thread in this list, TotalView updates the Stack
Trace, Stack Frame, and Source Panes to show the information for that
thread. When you dive on a different thread in the thread list, TotalView
finds or opens a new window that displays information for that thread.
The Stack Trace Pane shows the call stack of routines that the selected
thread is executing. You can move up and down the call stack by clicking
on the routine’s name (stack frame). When you select a different stack
frame, TotalView updates the Stack Frame and Source Panes to show the
information about the routine you just selected.
The Stack Frame Pane displays all of a routine’s parameters, its local
variables, and the registers for the selected stack frame.

Figure 119: A Process Window

Process ID (PID) Language of routine
Thread ID (TID) Line number area
Thread status Current program counter
Process status Context menu
Process/thread switching controls Action Points tab displayed

Viewing the Assembler Version of Your Code

TotalView Users Guide: version 8.8 175

The information displayed in the Stack Trace and Stack Frame Panes re-
flects the state of a process when it was last stopped. Consequently, the
information that they display is not up-to-date while a thread is running.
The left margin of the Source Pane displays line numbers and action point
icons. You can place a breakpoint at any line whose line number is con-
tained within a box. The box indicates that executable code was created
by the source code.
When you place a breakpoint on a line, TotalView places a icon over
the line number. An arrow over the line number shows the current location
of the program counter (PC) in the selected stack frame. (See Figure 120.)

Each thread has its own unique program counter (PC). When you stop a
multi-process or multi-threaded program, the routine displayed in the
Stack Trace Pane for a thread depends on the thread’s PC. Because
threads execute asynchronously, threads are stopped at different places.
(When your thread hits a breakpoint, the default is to stop all the other
threads in the process as well.)
The tabbed area at the bottom contains a set of tabs whose information
you can hide or display as you need it. In addition, the P+, P-, T+, and T-
buttons within this area allow you to change the Process Window’s con-
text by moving to another process or thread.
The Action Points Tab with the Tabs Pane shows the list of breakpoints, eval
points, and watchpoints for the process. The Processes/Ranks tab displays a
grid of all of your program’s processes. The grid’s elements show process
status and indicate the selected group. Selecting a process switches the
context to the first thread in that process.
The Threads Tab shows each thread and information about the thread.
Selecting a process switches the context to that thread.

Viewing the Assembler Version of
Your Code

You can display your program in source or assembler. You can use the fol-
lowing commands:

Source code (Default)
Select the View > Source As > Source command.

Assembler code Select the View > Source As > Assembler command.

Figure 120: Line Numbers
with Stop Icon and PC
Arrow

Viewing the Assembler Version of Your Code

176 Chapter 8: Using TotalView Windows

Both Source and assembler
Select the View > Source As > Both command.

The Source Pane divides into two parts. The left pane
contains the program’s source code and the right pane
contains the assembler version of this code. You can
set breakpoints in either of these panes. Setting an ac-
tion point at the first instruction after a source state-
ment is the same as setting it at that source statement.

The commands in the following table tell TotalView to display your assem-
bler code by using symbolic or absolute addresses:

You can also display assembler instructions in a Variable Window. For more information,
see “Displaying Machine Instructions” on page 299.

The following three figures illustrate the different ways TotalView can dis-
play assembler code. In the following figure, the second column (the one to
the right of the line numbers) shows the absolute address location. The
fourth column shows references using absolute addresses.

The following figure shows information symbolically. The second column
shows locations using functions and offsets. (See Figure 122 on
page 177.)

The final assembler figure shows the split Source Pane, with one side show-
ing the program’s source code and the other showing the assembler ver-
sion. In this example, the assembler is shown symbolically. How it is shown
depends on whether you’ve selected View > Assembler > By Address or
View > Assembler > Symbolically. (See Figure 123 on page 177.)

Command Display
View > Assembler > By Address Absolute addresses for locations and

references (default)
View > Assembler > Symbolically Symbolic addresses (function names and

offsets) for locations and references

Figure 121: Address Only
(Absolute Addresses)

Diving into Objects

TotalView Users Guide: version 8.8 177

When TotalView displays instructions, the arguments are almost always in the following
order: “source,destination”. On Linux-x86 and Linux x86-64 platforms, this can be
confusing as the order indicated in AMD and Intel technical literature indicates that the
order is usually “destination,source”. The order in which TotalView displays this infor-
mation conforms to the GNU assembler. This ordering is usually only an issue when
you are examining a core dump.

Diving into Objects

Diving, which is clicking your middle mouse button on something in a
TotalView window, is one of TotalView’s more distinguishing features.

In some cases, single-clicking performs a dive. For example, single-clicking on a function
name in the Stack Trace Pane tells TotalView to dive into the function. In other cases,
double-clicking does the same thing.

Figure 122: Assembly Only
(Symbolic Addresses)

Figure 123: Both Source and
Assembler (Symbolic
Addresses)

Diving into Objects

178 Chapter 8: Using TotalView Windows

Diving on processes and threads in the Root Window is the quickest way to
display a Process Window that contains information about what you’re diving
on. The procedure is simple: dive on a process or thread and TotalView takes
care of the rest. Another example is diving on variables in the Process Window,
which tells TotalView to display information about the variable in a Variable
Window.

The following table describes typical diving operations:

Diving on a struct or class member that is out of scope does not work.

TotalView tries to reuse windows. For example, if you dive on a variable and
that variable is already being displayed in a window, TotalView pops the

Items you dive on: Information Displayed:
Process or thread When you dive on a thread in the Root Window,

TotalView finds or opens a Process Window for that
process. If it doesn’t find a matching window,
TotalView replaces the contents of an existing
window and shows you the selected process.

Variable The variable displays in a Variable Window.
Expression List Variable Same as diving on a variable in the Source Pane: the

variable displays in a Variable Window.
Routine in the Stack Trace Pane The stack frame and source code for the routine

appear in a Process Window.
Array element, structure element,
or referenced memory area

The contents of the element or memory area
replace the contents that were in the Variable
Window. This is known as a nested dive.

Pointer TotalView dereferences the pointer and shows the
result in a separate Variable Window. Given the
nature of pointers, you may need to cast the result
into the logical data type.

Subroutine The source code for the routine replaces the
current contents of the Source Pane. When this
occurs TotalView places a right angle bracket (>)
in the process’s title. Every time it dives, it adds
another angle bracket. See the figure that follows
this table.
A routine must be compiled with source-line
information (usually, with the –g option) for you to
dive into it and see source code. If the subroutine
wasn’t compiled with this information, TotalView
displays the routine’s assembler code.

Variable Window TotalView replaces the contents of the Variable
Window with information about the variable or
element you’re diving on.

Expression List Window TotalView displays information about the variable in
a separate Variable Window.

Figure 124: Nested Dive

Resizing and Positioning Windows and Dialog Boxes

TotalView Users Guide: version 8.8 179

window to the top of the display. If you want the information to appear in a
separate window, use the View > Dive in New Window command.

Diving on a process or a thread might not create a new window if TotalView determines
that it can reuse a Process Window. If you really want to see information in two win-
dows, use the Process Window Window > Duplicate command.

When you dive into functions in the Process Window, or when you are chas-
ing pointers or following structure elements in the Variable Window, you can
move back and forth between your selections by using the forward and back-
ward buttons. The boxed area of the following figure shows the location of
these two controls.

For additional information about displaying variable contents, see “Diving
in Variable Windows” on page 300.

You can also use the following additional windowing commands:

Window > Duplicate: (Variable and Expression List Windows) Creates a
duplicate copy of the current Variable Window.
File > Close: Closes an open window.
File > Close Relatives: Closes windows that are related to the current win-
dow. The current window isn’t closed.
File > Close Similar: Closes the current window and all windows similar
to it.

Resizing and Positioning Windows
and Dialog Boxes

You can resize most TotalView windows and dialog boxes. While TotalView
tries to do the right thing, you can push things to the point where shrinking
doesn’t work very well. Figure 126 on page 180 shows a before-and-after
look in which a dialog box was made too small.

Figure 125: Backward and
Forward Buttons

Editing Text

180 Chapter 8: Using TotalView Windows

Many programmers like to have their windows always appear in the same
position in each session. The following two commands can help:

Window > Memorize: Tells TotalView to remember the position of the
current window. The next time you bring up this window, it’ll be in this
position.
Window > Memorize All: Tells TotalView to remember the positions of
most windows. The next time you bring up any of the windows displayed
when you used this command, it will be in the same position.

Most modern window managers such as KDE or Gnome do an excellent job
managing window position. If you are using an older window manager such
as twm or mwm, you may want to select the Force window positions
(disables window manager placement modes) check box option located on
the Options Page of the File > Preferences Dialog Box. This tells TotalView
to manage a window’s position and size. If it isn’t selected, TotalView only
manages a window’s size.

Editing Text

The TotalView field editor lets you change the values of fields in windows or
change text fields in dialog boxes.

To edit text:

1 Click the left mouse button to select the text you want to change. If you
can edit the selected text, TotalView will display an editing cursor.

Figure 126: Resizing (and Its
Consequences)

Saving the Contents of Windows

TotalView Users Guide: version 8.8 181

2 Edit the text and press Return.

Like other Motif-based applications, you can use your mouse to copy and
paste text in TotalView and to other X Windows applications by using your
mouse buttons.

You can also manipulate text by using Edit > Copy, Edit > Cut, Edit > Paste,
and Edit > Delete. If you haven’t yet pressed the Return key to confirm your
change, you can use the Edit > Undo command to restore information.

Usually TotalView dives when you click your middle-mouse button on
something. However, if TotalView is displaying an editing cursor, clicking
your middle-mouse button pastes text.

Saving the Contents of Windows

You can write an ASCII equivalent to most pages and panes by using the
File > Save Pane command. This command also lets you pipe data to UNIX
shell commands. (See Figure 127.)

If the window or pane contains a lot of data, you can use the Restrict
Output option to limit how much information TotalView writes or sends. For
example, you might not want to write a 100 x 100 x 10,000 array to disk. If
this option is checked (the default), TotalView only sends the indicated
number of lines. You can, of course, change the amount indicated here.

When piping information, TotalView sends what you’ve typed to /bin/sh.
This means that you can enter a series of shell commands. For example,
the following is a command that ignores the top five lines of output, com-
pares the current ASCII text to an existing file, and writes the differences to
another file:

| tail +5 | diff – file > file.diff

Figure 127: File > Save Pane
Dialog Box

Saving the Contents of Windows

182 Chapter 8: Using TotalView Windows

TotalView Users Guide: version 8.8 183

c
h
a
p
t
e
r

Visualizing Programs
and Data

9

TotalView provides a set of tools that let you visualize arrays and
your program’s activity. This chapter describes:

“Displaying Call Graphs” on page 183
“Visualizing Array Data” on page 185

If you are running an MPI program, “Displaying the
Message Queue Graph Window” on page 113 describes another visual-
ization tool.

Displaying Call Graphs

Debugging is an art, not a science. Debugging often means having the intu-
ition to make guesses about what a program is doing and where to look for
what is causing the problem. Locating a problem is often 90% or more of
the effort. The call graph can help you understand what your program is
doing so that you can begin to understand how your program is executing.

The call graph is a diagram that shows all the currently active routines.
These routines are linked by arrows indicating that one routine is called by
another. The call graph is a dynamic call graph in that it displays the call
graph at the time when TotalView creates it. The Update button tells
TotalView to recreate this display.

To display a call graph, choose the Tools > Call Graph command in the Pro-
cess Window. (A sample call graph is shown on the next page.)

You can tell TotalView to display a call graph for the processes and threads
specified with the controls at the top of this window. If you don’t touch
these controls, TotalView displays a call graph for the group defined in the
toolbar of your Process Window. If TotalView is displaying the call graph for

Displaying Call Graphs

184 Chapter 9: Visualizing Programs and Data

a multi-process or multi-threaded program, numbers next to the arrows
indicate which threads have a routine on their call stack.

If you dive on a routine within the call graph, TotalView creates a group
called call_graph. This group contains all of the threads that have the rou-
tine you dived on in its call stack. If you look at the Process Window’s Pro-
cesses tab, you’ll see that the call_graph set is selected in the scope pull-
down. In addition, the context of the Process Window changes to the first
thread in the set.

As you begin to understand your program, you will see that it has a rhythm
and a dynamic that is reflected in this diagram. As you examine and under-
stand this structure, you will sometimes see things that don’t look right—
which is a subjective response to how your program is operating. These
places are often where you want to begin looking for problems.

By diving on a routine that doesn’t look right, you’ll isolate the processes
into their own group so that you can find out what is occurring there. Every
time you dive on a routine, TotalView overwrites the group. If you want to
preserve the group, use the Groups > Custom Groups command to make a
copy of the group.

Looking at the call graph can also tell you where bottlenecks are occurring.
For example, if one routine is used by many other routines, and that rou-
tine controls a shared resource, this thread might be negatively affecting
performance.

Figure 128: Tools > Call
Graph Dialog Box

Visualizing Array Data

TotalView Users Guide: version 8.8 185

Visualizing Array Data

The TotalView Visualizer creates graphic images of your program’s array data.
Topics in this section are:

“Command Summary” on page 185
“How the Visualizer Works” on page 186
“Viewing Data Types in the Visualizer” on page 186
“Visualizing Data Manually” on page 187
“Using the Visualizer” on page 188
“Using the Graph Window” on page 190
“Using the Surface Window” on page 191
“Visualizing Data Programmatically” on page 196
“Launching the Visualizer from the Command Line” on page 197
“Configuring TotalView to Launch the Visualizer” on page 197

The Visualizer isn’t available on Linux Alpha and 32-bit SGI Irix. It’s available on all
other platforms. At release 7.0.1, the Visualizer was re-engineered. If you are using an
older release, you’ll need to see the documentation for that release.

Command
Summary

While the remainder of this chapter describes the Visualizer, you can get by
with the information described in the following table. This table summa-
rizes most of what you need to know when using the Visualizer.

Action Click or Press
Camera mode Actor mode
Rotate camera around
focal point (surface only)

Rotate actor around focal
point (surface only)

Left mouse button

Zoom Scale Right mouse button
Pan Translate Middle mouse button or

Shift-left mouse button
Other Functions
Pick (show value) p
Camera mode: mouse events affect the camera
position and focal point. (The axis moves and you
don’t.)

c

Actor mode: mouse events affect the actor that is
under the mouse pointer.Joystick-mode. (You move
and the axis doesn’t.)

a

Joystick mode: motion occurs continuously while a
mouse button is pressed

j

Trackball mode: motions only occurs when the
mouse button is pressed and the mouse pointer
moves.

t

Wireframe view w
Surface view s

Visualizing Array Data

186 Chapter 9: Visualizing Programs and Data

How the Visualizer Works

The Visualizer is a stand-alone program to which TotalView sends informa-
tion. Because it is separate, you can use it in more than one way; for example:

When you launch it from within TotalView, you can see your program’s
data as you are debugging your program.
If you save the data that would be sent to the Visualizer, you can view it
later by invoking the Visualizer from the command line. (See
Figure 129.)

Because TotalView is sending a data stream to the Visualizer, you can
even replace our Visualizer with any tool that can read this data.

The online Help contains information on adapting a third-party visualizer so that it
can be used with TotalView.

Viewing Data Types in the Visualizer

The data selected for visualization is called a dataset. TotalView treats stack
variables at different recursion levels or call paths as different datasets.

TotalView can visualize one- and two-dimensional arrays of integer or float-
ing-point data. If an array has more than two dimensions, you can visualize
part of it using an array slice that creates a subarray having fewer dimen-
sions. Figure 130 on page 187 shows a three-dimensional variable sliced so
that one of the dimensions is invariant.

Viewing Data
Different datasets can require different views to display their data. For
example, a graph is more suitable for displaying one-dimensional datasets

Reset r

Initialize I
Exit or Quit Ctrl-Q

Action Click or Press

Figure 129: TotalView
Visualizer Relationships

Launch Third
Party Visualizer

Launch Visualizer
from Command Line

TotalView
Visualizer

Third Party
Visualizer

Launch Visualizer
from TotalView

Save Data
to File

Visualizer
Data File

TotalView

Visualizing Array Data

TotalView Users Guide: version 8.8 187

or two-dimensional datasets if one of the dimensions has a small extent.
However, a surface view is better for displaying a two-dimensional dataset.

When TotalView launches the Visualizer, one of the following actions
occurs:

If the Visualizer is displaying the dataset, it raises the dataset’s window
to the top of the desktop. If you had minimized the window, the Visual-
izer restores it.
If you previously visualized a dataset but you’ve killed its window, the
Visualizer creates a new window using the most recent visualization
method.
If you haven’t visualized the dataset, the Visualizer chooses an appropri-
ate method. If you don’t want the Visualizer to choose, disable this fea-
ture by using the Options > Auto Visualize command in the Visualizer Di-
rectory Window.

Visualizing Data Manually

Before you can visualize an array, you must:

Open a Variable Window for the array’s data.
Stop program execution when the array’s values are set to what you
want them to be when they are visualized.

You can restrict the data being visualized by editing the Slice field. For
example, editing the Slice field limits the amount of data being visualized.
(See “Displaying Array Slices” on page 336.) Limiting the amount of data
increases the speed of the Visualizer.

After selecting the Variable Window Tools > Visualize command, the Visual-
izer creates its window. The data sent to the Visualizer isn’t automatically
updated as you step through your program. Instead, you must explicitly
update the display by selecting the Tools > Visualize again.

TotalView can visualize variables across threads or processes. (See “Visualiz-
ing a “Show Across” Variable Window” on page 349.) When you visualize this
display of the “Show Across” information, the Visualizer use the process or

Figure 130: A Three-
Dimensional Array Sliced
into Two Dimensions

Visualizing Array Data

188 Chapter 9: Visualizing Programs and Data

thread index as one dimension. This means that you can only visualize sca-
lar or vector information. If you do not want the process or thread index to
be a dimension, do not use a Show Across command.

Using the Visualizer

The Visualizer uses two types of windows:

Dataset Window
This window contains the datasets that you can visualize. Use this window
to set global options and to create views of your datasets. Commands in
this window let you obtain different views of the same data by allowing
you to open more than one View Window.
View Window
These are the windows that display your data. The commands in a View
Window let you set viewing options and change the way the Visualizer dis-
plays your data.

In Figure 131, the top window is a Dataset Window. The two remaining win-
dows show a surface and a graph view.

Using Dataset Window Commands
The Dataset Window shows you the datasets you can display. Double-click-
ing upon a dataset tells the Visualizer to display it.

Figure 131: Sample Visualizer
Windows

Visualizing Array Data

TotalView Users Guide: version 8.8 189

The View menu lets you select Graph or Surface visualization. Whenever
TotalView sends a new dataset to the Visualizer, the Visualizer updates its
dataset list. To delete a dataset from the list, click on it, display the File menu,
and then select Delete. (It’s usually easier to just close the Visualizer.)

The following commands are in the Dataset Window menu bar:

File > Delete Deletes the currently selected dataset. It removes the
dataset from the dataset list and destroys the View Win-
dows that displays it.

File > Exit Closes all windows and exits the Visualizer.

View > Graph Creates a new Graph Window; see “Using the Graph Win-
dow” on page 190.

View > Surface Creates a new Surface Window; see “Using the Surface
Window” on page 191.

Options > Auto Visualize
This item is a toggle; when enabled, the Visualizer auto-
matically visualizes new datasets as they are read. Typi-
cally, this option is left on. If, however, you have large
datasets and you want to configure how the Visualizer
displays the graph, you should disable this option.

Using View Window Commands
View Windows display graphic images of your data. Figure 132 shows a
graph view and a surface view. The View Window’s title is the text that
appears in the Dataset Window.

The View Window menu commands are as follows:

File > Close Closes the View Window.

Figure 132: Graph and
Surface Visualizer
Windows

Visualizing Array Data

190 Chapter 9: Visualizing Programs and Data

File > Dataset Raises the Dataset Window to the front of the desktop.
If you minimized the Dataset Window, the Visualizer re-
stores it.

File > Delete Deletes the View Window dataset from the dataset list.
This also destroys other View Windows that view the
dataset.

File > Options Pops up a window of viewing options.

Window > Duplicate Base Window
Creates a new View Window that has the same visualiza-
tion method and dataset as the current View Window.

The drawing area displays the image of your data. You can interact with the
drawing area to alter the view of your data. For example, if the Visualizer is
showing a surface, you can rotate the surface to view it from different
angles. You can also get the value and indices of the dataset element near-
est the cursor by clicking on it and typing “P”. A pop-up window displays
the information. These operations are discussed in “Using the Graph Window”
on page 190 and “Using the Surface Window” on page 191.

Using the Graph Window

The Graph Window displays a two-dimensional graph of one- or two-
dimensional datasets. If the dataset is two-dimensional, the Visualizer dis-
plays multiple graphs. When you first create a Graph Window on a two-
dimensional dataset, the Visualizer uses the dimension with the larger
number of elements for the X axis. It then draws a separate graph for each
subarray that has the smaller number of elements. If you don’t like this
choice, you can transpose the data by selecting a checkbox within the
File > Options Dialog Box.

You probably don’t want to use a graph to visualize two-dimensional datasets with large
extents in both dimensions as the display can be very cluttered. If you try, the Visualizer
only shows the first ten.

You can display graphs with points for each element of the dataset, with lines
connecting dataset elements, or with both lines and points. (See Figure 133
on page 191.)

If the Visualizer is displaying more than one graph, each is displayed in a
different color. The X axis of the graph is annotated with the indices of the
long dimension. The Y axis shows you the data value.

Displaying Graph Views
The File > Options Dialog Box lets you control how the Visualizer displays
the graph. (A different dialog box appears if the Visualizer is displaying a
surface view. See Figure 134 on page 191.)

The following describes the meanings of these check boxes:

Lines When set, the Visualizer displays lines connecting
dataset elements.

Visualizing Array Data

TotalView Users Guide: version 8.8 191

Points When set, the Visualizer displays points (markers) for
dataset elements.

Transpose When set, the Visualizer inverts which axis is held con-
stant when the Visualizer generates a graph of a two-di-
mensional graph. If you are not graphing a two-
dimensional object, the Visualizer grays out this check-
box.

Figure 135 on page 192 shows a sine wave displayed in three different ways:

To see the value of a dataset’s element, place your cursor near a graph
marker, and type “P”. The Visualizer responds by displaying its value. The
bottom graph in Figure 135 on page 192 shows the value of a data point.

Using the Surface Window

The Surface Window displays two-dimensional datasets as a surface in two
or three dimensions. The dataset’s array indices map to the first two
dimensions (X and Y axes) of the display. Figure 136 on page 192 shows a
surface view

Figure 133: Visualizer Graph
View Window

Figure 134: Graph Options
Dialog Box

Visualizing Array Data

192 Chapter 9: Visualizing Programs and Data

Figure 135: Sine wave
Displayed in Three Ways

Figure 136: A Surface View

Visualizing Array Data

TotalView Users Guide: version 8.8 193

The following figure shows a three-dimensional surface that maps element
values to the height (Z axis).

Displaying Surface Views
The Surface Window File > Options command (see Figure 138) lets you con-
trol how the Visualizer displays the graph. (A different dialog box appears if
the Visualizer is displaying a Graph View.)

The following describes the meaning of these check boxes:

Surface If this option is set, the Visualizer displays the array’s
data as a three-dimensional surface. If you don’t set
this option, the Visualizer displays the surface as a grid.

XY If this option is set, the Visualizer reorients the view’s
XY axes. The Z axis is perpendicular to the display.

Auto Reduce If this option is set, the Visualizer derives the displayed
surface by averaging over neighboring elements in the
original dataset. This speeds up visualization by reduc-
ing the resolution of the surface. Clear this option if
you want to accurately visualize all dataset elements.

Figure 137: A Surface View of
a Sine Wave

Figure 138: Surface Options
Dialog Box

Visualizing Array Data

194 Chapter 9: Visualizing Programs and Data

The Auto Reduce option lets you choose between view-
ing all your data points—which takes longer to appear
in the display—or viewing the averaging of data over a
number of nearby points.

Figure 139 shows four different views of the same data, differing only in the
selection of Surface and XY options.

You can reset the viewing parameters to those used when you first invoked
the Visualizer by selecting the View > Initialize View command, which
restores all translation, rotation, and scaling to their initial state, and
enlarges the display area slightly.

Figure 139: Four
Surface Views

Visualizing Array Data

TotalView Users Guide: version 8.8 195

Manipulating Surface Data
The actions that the Visualizer performs differ when you are in actor mode
instead of camera mode, which is the default. In camera mode, the Visual-
izer pretends to be moving a “camera” that is showing you the view. In
actor mode, the Visualizer assumes that changes to the way you are seeing
the object are due to you changing your position. The difference between
these is subtle. In some circumstances, actions such as pan and zoom in
camera mode can also add a slight rotation to the object.

From within TotalView, you can only see one array at a time. However, if you
combine multiple datasets and visualize them externally, the differences
between camera and actor mode can help differentiate the objects.

The following table defines general commands that you can use while dis-
playing a surface view. Command letters can be typed in either upper- or
lower-case.

The following table defines the actions you can perform using your mouse:

Action Press

Pick (show value): The Visualizer shows the value of the data point
underneath the cursor.

p

Camera mode: Mouse events affect the camera position and focal
point. (Axes moves, and you don’t.)

c

Actor mode: Mouse events affect the actor that is under the mouse
pointer. (You move, not the axes.)

a

Joystick mode: Motion occurs continuously while you are pressing a
mouse button.

j

Trackball mode: Motion only occurs when you press the mouse button
and you move the mouse pointer.

t

Wireframe view: The Visualizer displays the surface as a mesh. (This is
the same as not checking the Surface option.)

w

Surface view: The Visualizer displays the surface as a solid. (This is the
same as having checked the Surface option.)

s

Reset: Removes some of the changes you’ve made to the way the
Visualizer displays an object.

r

Initialize: Restores the object to what it was before you interacted with
the Visualizer. As this is a menubar accelerator, the window must have
focus.

i

Exit or Quit: Close the Visualizer. Ctrl-Q

Action Click or Press
Camera mode Actor mode
Rotate camera around
focal point (surface only)

Rotate actor around focal
point (surface only)

Left mouse button

Zoom: you appear to get
closer to the object.

Scale: the object appears
to get larger

Right mouse button

Pan: you move the
“camera”. For example,
moving the camera up
means the object moves
down.

Translate: The object
moves in the direction you
pull it.

Middle mouse button or
Shift-left mouse button

Visualizing Array Data

196 Chapter 9: Visualizing Programs and Data

Visualizing Data Programmatically

The $visualize function lets you visualize data from within eval points and
the Tools > Evaluate Window. Because you can enter more than one
$visualize function within an eval point or Evaluate Window, you can simul-
taneously visualize multiple variables.

If you enter the $visualize function in an eval point, TotalView interprets
rather than compiles the expression, which can greatly decrease perfor-
mance. See “Defining Eval Points and Conditional Breakpoints” on page 368 for
information about compiled and interpreted expressions.

Using the $visualize function in an eval point lets you animate the changes
that occur in your data, because the Visualizer updates the array’s display
every time TotalView reaches the eval point. Here is this function’s syntax:

$visualize (array [, slice_string])

The array argument names the dataset being visualized. The optional
slice_string argument is a quoted string that defines a constant slice expres-
sion that modifies the array parameter’s dataset. In Fortran, you can use
either a single (’) or double (") quotation mark. You must use a double quo-
tation mark in C or C++.

The following examples show how you can use this function. Notice that
the array’s dimension ordering differs between C/C++ and Fortran.

C and C++ $visualize(my_array);

$visualize (my_array,"[::2][10:15]");

$visualize (my_array,"[12][:]");

Fortran $visualize (my_array)

$visualize (my_array,’(11:16,::2)’)

$visualize (my_array,’(:,13)’)

The first example in each programming language group visualizes the entire
array. The second example selects every second element in the array’s
major dimension; it also clips the minor dimension to all elements in the
range. The third example reduces the dataset to a single dimension by
selecting one subarray.

You may need to cast your data so that TotalView knows what the array’s
dimensions are. For example, here is a C function that passes a two-dimen-
sional array parameter that does not specify the major dimension’s extent.

void my_procedure (double my_array[][32])
{ /* procedure body */ }

You would need to cast this before TotalView can visualize it. For example:

$visualize (*(double[32][32]*)my_array);

Sometimes, it’s hard to know what to specify. You can quickly refine array
and slice arguments, for example, by entering the $visualize function into
the Tools > Evaluate Dialog Box. When you select the Evaluate button, you
quickly see the result. You can even use this technique to display several
arrays simultaneously.

Visualizing Array Data

TotalView Users Guide: version 8.8 197

Launching the Visualizer from the Command Line

To start the Visualizer from the shell, use the following syntax:

visualize [–file filename | –persist]

where:

–file filename Reads data from filename instead of reading from stan-
dard input. For information on crating this file, see “Set-
ting the Visualizer Launch Command” on page 198.

–persist Continues to run after encountering an EOF (End-of-
File) on standard input. If you don’t use this option, the
Visualizer exits as soon as it reads all of the data.

By default, the Visualizer reads its datasets from standard input and exits
when it reads an EOF. When started by TotalView, the Visualizer reads its
data from a pipe, ensuring that the Visualizer exits when TotalView does. If
you want the Visualizer to continue to run after it exhausts all input, invoke
it by using the –persist option.

If you want to read data from a file, invoke the Visualizer with the –file
option:

visualize –file my_data_set_file

The Visualizer reads all the datasets in the file. This means that the images
you see represent the last versions of the datasets in the file.

The Visualizer supports the generic X toolkit command-line options. For
example, you can start the Visualizer with the Directory Window minimized
by using the –iconic option. Your system manual page for the X server or
the X Window System User’s Guide by O’Reilly & Associates lists the generic X
command-line options in detail.

You can also customize the Visualizer by setting X resources in your
resource files or on the command line with the –xrm resource_setting
option.

Configuring TotalView to Launch the Visualizer

TotalView launches the Visualizer when you select the Tools > Visualize
command from the Variable Window. It also launches it if or when you use a
$visualize function in an eval point and the Tools > Evaluate Dialog Box.

TotalView lets you set a preference that disables visualization. This lets you
turn off visualization when your program executes code that contains eval
points, without having to individually disable all the eval points.

To change the Visualizer launch options interactively, select File >
Preferences, and then select the Launch Strings Tab. (See Figure 140 on
page 198.)

The changes you can make using these preferences are:

Customize the command that TotalView uses to start a visualizer by en-
tering the visualizer’s start up command in the Command edit box.

Visualizing Array Data

198 Chapter 9: Visualizing Programs and Data

Change the autolaunching option. If you want to disable visualization,
clear the Enable Visualizer launch check box.
Change the maximum permissible rank. Edit the value in the Maximum
array rank field to save the data exported from TotalView or display it in a
different visualizer. A rank’s value can range from 1 to 16.
Setting the maximum permissible rank to either 1 or 2 (the default is 2)
ensures that the Visualizer can use your data—the Visualizer displays only
two dimensions of data. This limit doesn’t apply to data saved in files or
to third-party visualizers that can display more than two dimensions of
data.
Clicking the Defaults button returns all values to their default values. This
reverts options to their default values even if you have used X resources
to change them.

If you disable visualization while the Visualizer is running, TotalView closes
its connection to the Visualizer. If you reenable visualization, TotalView
launches a new Visualizer process the next time you visualize something.

Setting the Visualizer Launch Command
You can change the shell command that TotalView uses to launch the Visu-
alizer by editing the Visualizer launch command. (In most cases, the only
reason you’d do this is if you’re having path problems or you’re running a
different visualizer.) You can also change what’s entered here so that you
can view this information at another time; for example:

cat > your_file

Later, you can visualize this information by typing either:

visualize –persist < your_file
visualize –file your_file

You can preset the Visualizer launch options by setting X resources.

Figure 140: File > Preferences
Launch Strings Page

TotalView Users Guide: version 8.8 199

Part IV: Using the CLI

The chapters in this part of the book deal exclusively with the CLI. Most CLI
commands must have a process/thread focus for what they do. See Chap-
ter 13: “Using Groups, Processes, and Threads” on page 253 for more informa-
tion.

Chapter 11: Seeing the CLI at Work
While you can use the CLI as a stand-alone debugger, using
the GUI is usually easier. You will most often use the CLI
when you need to debug programs using very slow commu-
nication lines or when you need to create debugging func-
tions that are unique to your program. This chapter presents
a few Tcl macros in which CLI commands are embedded.

Most of these examples are simple. They are designed to
give you a feel for what you can do.

Chapter 10: Using the CLI
You can use CLI commands without knowing much about
Tcl, which is the approach taken in this chapter. This chapter
tells you how to enter CLI commands and how the CLI and
TotalView interact with one another when used in a non-
graphical way.

200

TotalView Users Guide: version 8.8 201

c
h
a
p
t
e
r

Using the CLI

10

The two components of the Command Line Interface (CLI) are the
Tcl-based programming environment and the commands added to
the Tcl interpreter that lets you debug your program. This chapter
looks at how these components interact, and describes how you
specify processes, groups, and threads.

This chapter emphasizes interactive use of the CLI rather than using
the CLI as a programming language because many of its concepts
are easier to understand in an interactive framework. However,
everything in this chapter can be used in both environments.

This chapter contains the following sections:

“About the Tcl and the CLI” on page 201
“Starting the CLI” on page 203
“About CLI Output” on page 207
“Using Command Arguments” on page 208
“Using Namespaces” on page 209
“About the CLI Prompt” on page 209
“Using Built-in and Group Aliases” on page 210
“How Parallelism Affects Behavior” on page 211
“Controlling Program Execution” on page 212

About the Tcl and the CLI

The CLI is built in version 8.0 of Tcl, so TotalView CLI commands are built
into Tcl. This means that the CLI is not a library of commands that you can
bring into other implementations of Tcl. Because the Tcl you are running is

About the Tcl and the CLI

202 Chapter 10: Using the CLI

the standard 8.0 version, the CLI supports all libraries and operations that
run using version 8.0 of Tcl.

Integrating CLI commands into Tcl makes them intrinsic Tcl commands.
This lets you enter and execute all CLI commands in exactly the same way
as you enter and execute built-in Tcl commands. As CLI commands are also
Tcl commands, you can embed Tcl primitives and functions in CLI com-
mands, and embed CLI commands in sequences of Tcl commands.

For example, you can create a Tcl list that contains a list of threads, use Tcl
commands to manipulate that list, and then use a CLI command that oper-
ates on the elements of this list. You can also create a Tcl function that
dynamically builds the arguments that a process uses when it begins exe-
cuting.

About The CLI and TotalView

The following figure illustrates the relationship between the CLI, the GUI,
the TotalView core, and your program:

The CLI and GUI are components that communicate with the TotalView
core, which is what actually does the work. In this figure, the dotted arrow
between the GUI and the CLI indicates that you can invoke the CLI from
the GUI. The reverse isn’t true: you can’t invoke the GUI from the CLI.

In turn, the TotalView core communicates with the processes that make up
your program, receives information back from these processes, and passes
information back to the component that sent the request. If the GUI is also
active, the core also updates the GUI’s windows. For example, stepping
your program from within the CLI changes the PC in the Process Window,
updates data values, and so on.

Figure 141: The CLI, GUI and
TotalView CLI GUI

Core

Process 1
Thread 1

Thread 2

Process 2
Thread 1

Thread 2

Program being debugged

TotalView
Tcl

Starting the CLI

TotalView Users Guide: version 8.8 203

Using the CLI Interface

You interact with the CLI by entering a CLI or Tcl command. (Entering a Tcl
command does exactly the same thing in the CLI as it does when interact-
ing with a Tcl interpreter.) Typically, the effect of executing a CLI command
is one or more of the following:

The CLI displays information about your program.
A change takes place in your program’s state.
A change takes place in the information that the CLI maintains about
your program.

After the CLI executes your command, it displays a prompt. Although CLI
commands are executed sequentially, commands executed by your pro-
gram might not be. For example, the CLI doesn’t require that your program
be stopped when it prompts for and performs commands. It only requires
that the last CLI command be complete before it can begin executing the
next one. In many cases, the processes and threads being debugged con-
tinue to execute after the CLI finished doing what you asked it to do.

If you need to stop an executing command or Tcl macro, press Ctrl+C
while the command is executing. If the CLI is displaying its prompt, typing
Ctrl+C stops executing processes.

Because actions are occurring constantly, state information and other
kinds of messages that the CLI displays are usually mixed in with the com-
mands that you type. You might want to limit the amount of information
TotalView displays by setting the VERBOSE variable to WARNING or ERROR.
(For more information, see the “Variables” chapter in the TotalView Reference
Guide.)

Starting the CLI

You can start the CLI in one of the following ways:

You can start the CLI from the GUI by selecting the Tools > Command
Line command in the Root or Process Windows. After selecting this com-
mand, TotalView opens a window into which you can enter CLI com-
mands.
You can start the CLI directly from a shell prompt by typing totalviewcli.
(This assumes that the TotalView binary directory is in your path.)

Figure 142 on page 204 is a snapshot of a CLI window that shows part of a
program being debugged.

If you have problems entering and editing commands, it might be because you
invoked the CLI from a shell or process that manipulates your stty settings.

Starting the CLI

204 Chapter 10: Using the CLI

You can eliminate these problems if you use the stty sane CLI command. (If
the sane option isn’t available, you have to change values individually.)

If you start the CLI with the totalviewcli command, you can use all of the
command-line options that you can use when starting TotalView, except
those that have to do with the GUI. (In some cases, TotalView displays an
error message if you try. In others, it just ignores what you did.)

Startup Example

The following is a very small CLI script:

#
source make_actions.tcl
#
dload fork_loop
dset ARGS_DEFAULT {0 4 –wp}
dstep
catch {make_actions fork_loop.cxx} msg
puts $msg

This script begins by loading and interpreting the make_actions.tcl file,
which was described in Chapter 11, “Seeing the CLI at Work,” on page 215. It
then loads the fork_loop executable, sets its default startup arguments,
and steps one source-level statement.

If you stored this in a file named fork_loop.tvd, you can tell TotalView to
start the CLI and execute this file by entering the following command:

totalviewcli –s fork_loop.tvd

Information on command-line options is in the “TotalView Command Syntax”
chapter of the TotalView Reference Guide.

The following example places a similar set of commands in a file that you
invoke from the shell:

#!/bin/sh
Next line exec. by shell, but ignored by Tcl because: \

exec totalviewcli –s "$0" "$@"

Figure 142: CLI xterm
Window

Starting the CLI

TotalView Users Guide: version 8.8 205

#
source make_actions.tcl
#
dload fork_loop
dset ARGS_DEFAULT {0 4 –wp}
dstep
catch {make_actions fork_loop.cxx} msg
puts $msg

The only real difference between the last two examples is the first few lines
in the file. In this second example, the shell ignores the backslash continu-
ation character; Tcl processes it. This means that the shell executes the
exec command while Tcl will ignore it.

Starting Your Program

The CLI lets you start debugging operations in several ways. To execute
your program from within the CLI, enter a dload command followed by the
drun command.

If your program is launched from a starter program such as srun or yod, use the drerun
command rather than drun to start your program. If you use drun, default arguments
to the process are suppressed; drerun passes them on.

The following example uses the totalviewcli command to start the CLI. This
is followed by dload and drun commands. Since this was not the first time
the file was run, breakpoints exist from a previous session.

In this listing, the CLI prompt is “d1.<>”. The information preceding the greater-than
symbol (>) symbol indicates the processes and threads upon which the current com-
mand acts. The prompt is discussed in “About the CLI Prompt” on page 209.

% totalviewcli
d1.<> dload arraysAlpha #load the arraysAlpha program
1
d1.<> dactions # Show the action points
No matching breakpoints were found
d1.<> dlist –n 10 75

75 real16_array (i, j) = 4.093215 * j+2
76 #endif
77 26 continue
78 27 continue
79
80 do 40 i = 1, 500
81 denorms(i) = x'00000001'
82 40 continue
83 do 42 i = 500, 1000
84 denorms(i) = x'80000001'

d1.<> dbreak 80 # Add two action points
1
d1.<> dbreak 83
2
d1.<> drun # Run the program to the action point

Starting the CLI

206 Chapter 10: Using the CLI

This two-step operation of loading and running lets you set action points
before execution begins. It also means that you can execute a program
more than once. At a later time, you can use the drerun command to
restart your program, perhaps sending it new command-line arguments. In
contrast, reentering the dload command tells the CLI to reload the program
into memory (for example, after editing and recompiling the program). The
dload command always creates new processes. This means that you get a
new process each time the CLI executes it. The CLI does not, however,
remove older ones.

The dkill command terminates one or more processes of a program started
by using a dload, drun, or drerun command. The following example contin-
ues where the previous example left off:

d1.<> dkill # kills process
d1.<> drun # runs program from start
d1.<> dlist –e –n 3 # shows lines about current spot

79
80@> do 40 i = 1, 500
81 denorms(i) = x'00000001'

d1.<> dwhat master_array # Tell me about master_array
In thread 1.1:
Name: master_array; Type: integer(100);

Size: 400 bytes; Addr: 0x140821310
Scope: ##arraysAlpha#arrays.F#check_fortran_arrays
(Scope class: Any)
Address class: proc_static_var
(Routine static variable)

d1.<> dgo # Start program running
d1.<> dwhat denorms # Tell me about denorms
In thread 1.1:
Name: denorms; Type: <void>; Size: 8 bytes;

Addr: 0x1408214b8
Scope: ##arraysAlpha#arrays.F#check_fortran_arrays
(Scope class: Any)
Address class: proc_static_var
(Routine static variable)

d1.<> dprint denorms(0) # Show me what is stored
denorms(0) = 0x0000000000000001 (1)

d1.<>

Because information is interleaved, you may not realize that the prompt
has appeared. It is always safe to use the Enter key to have the CLI redis-
play its prompt. If a prompt isn’t displayed after you press Enter, you know
that the CLI is still executing.

About CLI Output

TotalView Users Guide: version 8.8 207

About CLI Output

A CLI command can either print its output to a window or return the output
as a character string. If the CLI executes a command that returns a string
value, it also prints the returned string. Most of the time, you won’t care
about the difference between printing and returning-and-printing. Either way,
the CLI displays information in your window. And, in both cases, printed
output is fed through a simple more processor. (This is discussed in more
detail in the next section.)

In the following two cases, it matters whether the CLI directly prints output
or returns and then prints it:

When the Tcl interpreter executes a list of commands, the CLI only prints
the information returned from the last command. It doesn’t show infor-
mation returned by other commands.
You can only assign the output of a command to a variable if the CLI re-
turns a command’s output. You can’t assign output that the interpreter
prints directly to a variable, or otherwise manipulate it, unless you save it
using the capture command.

For example, the dload command returns the ID of the process object that
was just created. The ID is normally printed—unless, of course, the dload
command appears in the middle of a list of commands; for example:

{dload test_program;dstatus}

In this example, the CLI doesn’t display the ID of the loaded program, since
the dload command was not the last command.

When information is returned, you can assign it to a variable. For example,
the next command assigns the ID of a newly created process to a variable:

set pid [dload test_program]

Because you can’t assign the output of the help command to a variable,
the following doesn’t work:

set htext [help]

This statement assigns an empty string to htext because the help com-
mand doesn’t return text. It just prints it.

To save the output of a command that prints its output, use the capture
command. For example, the following example writes the help command’s
output into a variable:

set htext [capture help]

You can only capture the output from commands. You can’t capture the informational
messages displayed by the CLI that describe process state. If you are using the GUI,
TotalView also writes this information to the Log Window. You can display this informa-
tion by using the Tools > Event Log command.

Using Command Arguments

208 Chapter 10: Using the CLI

‘more’ Processing

When the CLI displays output, it sends data through a simple more-like pro-
cess. This prevents data from scrolling off the screen before you view it.
After you see the MORE prompt, press Enter to see the next screen of data.
If you type q (followed by pressing the Enter key), the CLI discards any data
it hasn’t yet displayed.

You can control the number of lines displayed between prompts by using
the dset command to set the LINES_PER_SCREEN CLI variable. (For more
information, see the TotalView Reference Guide.)

Using Command Arguments

The default command arguments for a process are stored in the ARGS(num)
variable, where num is the CLI ID for the process. If you don’t set the
ARGS(num) variable for a process, the CLI uses the value stored in the
ARGS_DEFAULT variable. TotalView sets the ARGS_DEFAULT variable when
you use the –a option when starting the CLI or the GUI.

The –a option tells TotalView to pass everything that follows on the command line to the
program.

For example:

totalviewcli –a argument-1, argument-2, ...

To set (or clear) the default arguments for a process, you can use the dset
command to modify the ARGS() variables directly, or you can start the pro-
cess with the drun command. For example, the following clears the default
argument list for process 2:

dunset ARGS(2)

The next time process 2 is started, the CLI uses the arguments contained in
ARGS_DEFAULT.

You can also use the dunset command to clear the ARGS_DEFAULT variable;
for example:

dunset ARGS_DEFAULT

All commands (except the drun command) that can create a process—
including the dgo, drerun, dcont, dstep, and dnext commands—pass the
default arguments to the new process. The drun command differs in that it
replaces the default arguments for the process with the arguments that are
passed to it.

Using Namespaces

TotalView Users Guide: version 8.8 209

Using Namespaces

CLI interactive commands exist in the primary Tcl namespace (::). Some of
the TotalView state variables also reside in this namespace. Seldom-used
functions and functions that are not primarily used interactively reside in
other namespaces. These namespaces also contain most TotalView state
variables. (The variables that appear in other namespaces are usually
related to TotalView preferences.) TotalView uses the following
namespaces:

TV:: Contains commands and variables that you use when
creating functions. They can be used interactively, but
this is not their primary role.

TV::GUI:: Contains state variables that define and describe prop-
erties of the user interface, such as window placement
and color.

If you discover other namespaces beginning with TV, you have found a
namespace that contains private functions and variables. These objects
can (and will) disappear, so don’t use them. Also, don’t create namespaces
that begin with TV, since you can cause problems by interfering with built-in
functions and variables.

The CLI dset command lets you set the value of these variables. You can
have the CLI display a list of these variables by specifying the namespace;
for example:

dset TV::

You can use wildcards with this command. For example, dset TV::au* dis-
plays all variables that begin with “au”.

About the CLI Prompt

The appearance of the CLI prompt lets you know that the CLI is ready to
accept a command. This prompt lists the current focus, and then displays a
greater-than symbol (>) and a blank space. (The current focus is the pro-
cesses and threads to which the next command applies.) For example:

d1.<> The current focus is the default set for each command,
focusing on the first user thread in process 1.

g2.3> The current focus is process 2, thread 3; commands act
on the entire group.

Using Built-in and Group Aliases

210 Chapter 10: Using the CLI

t1.7> The current focus is thread 7 of process 1.

gW3.> The current focus is all worker threads in the control
group that contains process 3.

p3/3 The current focus is all processes in process 3, group 3.

You can change the prompt’s appearance by using the dset command to
set the PROMPT state variable; for example:

dset PROMPT "Kill this bug! > "

Using Built-in and Group Aliases

Many CLI commands have an alias that lets you abbreviate the command’s
name. (An alias is one or more characters that Tcl interprets as a command
or command argument.)

The alias command, which is described in the TotalView Reference Guide, lets you create
your own aliases.

For example, the following command tells the CLI to halt the current group:

dfocus g dhalt

Using an abbreviation is easier. The following command does the same thing:

f g h

You often type less-used commands in full, but some commands are
almost always abbreviated. These commands include dbreak (b), ddown
(d), dfocus (f), dgo (g), dlist (l), dnext (n), dprint (p), dstep (s), and dup (u).

The CLI also includes uppercase group versions of aliases for a number of
commands, including all stepping commands. For example, the alias for
dstep is s; in contrast, S is the alias for dfocus g dstep. (The first command
tells the CLI to step the process. The second steps the control group.)

Group aliases differ from the group-level command that you type interac-
tively, as follows:

They do not work if the current focus is a list. The g focus specifier modi-
fies the current focus, and can only be applied if the focus contains just
one term.
They always act on the group, no matter what width is specified in the
current focus. Therefore, dfocus t S does a step-group command.

How Parallelism Affects Behavior

TotalView Users Guide: version 8.8 211

How Parallelism Affects Behavior

A parallel program consists of some number of processes, each involving
some number of threads. Processes fall into two categories, depending on
when they are created:

Initial process
A preexisting process from the normal run-time environment (that is, cre-
ated outside TotalView) or one that was created as TotalView loaded the
program.
Spawned process
A new process created by a process executing under CLI control.

TotalView assigns an integer value to each individual process and thread
under its control. This process/thread identifier can be the system identifier
associated with the process or thread. However, it can be an arbitrary value
created by the CLI. Process numbers are unique over the lifetime of a debug-
ging session; in contrast, thread numbers are only unique while the process
exists.

Process/thread notation lets you identify the component that a command
targets. For example, if your program has two processes, and each has two
threads, four threads exist:

Thread 1 of process 1
Thread 2 of process 1
Thread 1 of process 2
Thread 2 of process 2

You identify the four threads as follows:

1.1—Thread 1 of process 1
1.2—Thread 2 of process 1
2.1—Thread 1 of process 2
2.2—Thread 2 of process 2

Types of IDs

Multi-threaded, multi-process, and distributed programs contain a variety
of IDs. The following types are used in the CLI and the GUI:

System PID This is the process ID and is generally called the PID.

System TID This is the ID of the system kernel or user thread. On
some systems (for example, AIX), the TIDs have no ob-
vious meaning. On other systems, they start at 1 and
are incremented by 1 for each thread.

Controlling Program Execution

212 Chapter 10: Using the CLI

TotalView thread ID
This is usually identical to the system TID. On some
systems (such as AIX) where the threads have no obvi-
ous meaning, TotalView uses its own IDs.

pthread ID This is the ID assigned by the Posix pthreads package.
If this differs from the system TID, it is a pointer value
that points to the pthread ID.

Debugger PID This is an ID created by TotalView that lets it identify
processes. It is a sequentially numbered value begin-
ning at 1 that is incremented for each new process. If
the target process is killed and restarted (that is, you
use the dkill and drun commands), TotalView PID
doesn’t change. The system PID changes, since the op-
erating system has created a new target process.

Controlling Program Execution

Knowing what’s going on and where your program is executing is simple in
a serial debugging environment. Your program is either stopped or running.
When it is running, an event such as arriving at a breakpoint can occur. This
event tells TotalView to stop the program. Sometime later, you tell the
serial program to continue executing. Multi-process and multi-threaded
programs are more complicated. Each thread and each process has its own
execution state. When a thread (or set of threads) triggers a breakpoint,
TotalView must decide what it should do about other threads and pro-
cesses because it may need to stop some and let others continue to run.

Advancing Program Execution

Debugging begins by entering a dload or dattach command. If you use the
dload command, you must use the drun (or perhaps drerun if there’s a
starter program) command to start the program executing. These three
commands work at the process level and you can’t use them to start indi-
vidual threads. (This is also true for the dkill command.)

To advance program execution, you enter a command that causes one or
more threads to execute instructions. The commands are applied to a P/T
set. (P/T sets are discussed in Chapter 2, “About Threads,
Processes, and Groups,” on page 15 and Chapter 13, “Using Groups, Processes,
and Threads,” on page 253.) Because the set doesn’t have to include all pro-
cesses and threads, you can cause some processes to be executed while
holding others back. You can also advance program execution by incre-
ments, stepping the program forward, and you can define the size of the
increment. For example, dnext 3 executes the next three statements, and
then pauses what you’ve been stepping.

Controlling Program Execution

TotalView Users Guide: version 8.8 213

Typically, debugging a program means that you have the program run, and
then you stop it and examine its state. In this sense, a debugger can be
thought of as a tool that lets you alter a program’s state in a controlled
way. And debugging is the process of stopping a process to examine its
state. However, the term stop has a slightly different meaning in a multi-pro-
cess, multi-threaded program; in these programs, stopping means that the
CLI holds one or more threads at a location until you enter a command
that tells them to start executing again.

For more information, see Chapter 12, “Debugging Programs,” on page 225.

Using Action Points

Action points tell the CLI to stop a program’s execution. You can specify the
following types of action points:

A breakpoint (see dbreak in the TotalView Reference Guide) stops the process
when the program reaches a location in the source code.
A watchpoint (see dwatch in the TotalView Reference Guide) stops the process
when the value of a variable is changed.
A barrier point (see dbarrier in the TotalView Reference Guide), as its name
suggests, effectively prevents processes from proceeding beyond a point
until all other related processes arrive. This gives you a method for syn-
chronizing the activities of processes. (You can only set a barrier point on
processes; you can’t set then on individual threads.)
An eval point (see dbreak in the TotalView Reference Guide) lets you program-
matically evaluate the state of the process or variable when execution
reaches a location in the source code. An eval point typically does not
stop the process; instead, it performs an action. In most cases, an eval
point stops the process when some condition that you specify is met.

For extensive information on action points, see “Setting Action Points” on page 351.

Each action point is associated with an action point identifier. You use these
identifiers when you need to refer to the action point. Like process and
thread identifiers, action point identifiers are assigned numbers as they are
created. The ID of the first action point created is 1; the second ID is 2, and
so on. These numbers are never reused during a debugging session.

The CLI and the GUI let you assign only one action point to a source code
line, but you can make this action point as complex as you need it to be.

Controlling Program Execution

214 Chapter 10: Using the CLI

TotalView Users Guide: version 8.8 215

c
h
a
p
t
e
r

Seeing the CLI
at Work

11

The CLI is a command-line debugger that is completely integrated
with TotalView. You can use it and never use the TotalView GUI, or
you can use it and the GUI simultaneously. Because the CLI is
embedded in a Tcl interpreter, you can also create debugging func-
tions that exactly meet your needs. When you do this, you can use
these functions in the same way that you use TotalView’s built-in CLI
commands.

This chapter contains macros that show how the CLI programmati-
cally interacts with your program and with TotalView. Reading exam-
ples without bothering too much with details gives you an apprecia-
tion for what the CLI can do and how you can use it. With a basic
knowledge of Tcl, you can make full use of all CLI features.

In each macro in this chapter, all Tcl commands that are unique to
the CLI are displayed in bold. These macros perform the following
tasks:

“Setting the CLI EXECUTABLE_PATH Variable” on page 216
“Initializing an Array Slice” on page 217
“Printing an Array Slice” on page 217
“Writing an Array Variable to a File” on page 219
“Automatically Setting Breakpoints” on page 220

Setting the CLI EXECUTABLE_PATH Variable

216 Chapter 11: Seeing the CLI at Work

Setting the CLI EXECUTABLE_PATH
Variable

The following macro recursively descends through all directories, starting
at a location that you enter. (This is indicated by the root argument.) The
macro ignores directories named in the filter argument. The result is set as
the value of the CLI EXECUTABLE_PATH state variable.

Usage:
#
rpath [root] [filter]
#
If root is not specified, start at the current
directory. filter is a regular expression that removes
unwanted entries. If it is not specified, the macro
automatically filters out CVS/RCS/SCCS directories.
#
The search path is set to the result.

proc rpath {{root "."} {filter "/(CVS|RCS|SCCS)(/|$)"}} {

Invoke the UNIX find command to recursively obtain
a list of all directory names below "root".
set find [split [exec find $root –type d –print] \n]

set npath ""

Filter out unwanted directories.
foreach path $find {

if {! [regexp $filter $path]} {
append npath ":"
append npath $path

}
}

Tell TotalView to use it.
dset EXECUTABLE_PATH $npath

}

In this macro, the last statement sets the EXECUTABLE_PATH state variable.
This is the only statement that is unique to the CLI. All other statements
are standard Tcl.

The dset command, like most interactive CLI commands, begins with the
letter d. (The dset command is only used in assigning values to CLI state
variables. In contrast, values are assigned to Tcl variables by using the stan-
dard Tcl set command.)

Initializing an Array Slice

TotalView Users Guide: version 8.8 217

Initializing an Array Slice

The following macro initializes an array slice to a constant value:

array_set (var lower_bound upper_bound val) {
for {set i $lower_bound} {$i <= $upper_bound} {incr i}{

dassign $var\($i) $val
}

}

The CLI dassign command assigns a value to a variable. In this case, it is
setting the value of an array element. Use this function as follows:

d1.<> dprint list3
list3 = {

(1) = 1 (0x0000001)
(2) = 2 (0x0000001)
(3) = 3 (0x0000001)

}
d1.<> array_set list 2 3 99
d1.<> dprint list3
list3 = {

(1) = 1 (0x0000001)
(2) = 99 (0x0000063)
(3) = 99 (0x0000063)

}

Printing an Array Slice

The following macro prints a Fortran array slice. This macro, like others
shown in this chapter, relies heavily on Tcl and uses unique CLI commands
sparingly.

proc pf2Dslice {anArray i1 i2 j1 j2 {i3 1} {j3 1} \
{width 20}} {

for {set i $i1} {$i <= $i2} {incr i $i3} {
set row_out ""
for {set j $j1} {$j <= $j2} {incr j $j3} {

set ij [capture dprint $anArray\($i,$j\)]
set ij [string range $ij \

[expr [string first "=" $ij] + 1] end]
set ij [string trimright $ij]
if {[string first "-" $ij] == 1} {

set ij [string range $ij 1 end]}
append ij " "
append row_out " " \

Printing an Array Slice

218 Chapter 11: Seeing the CLI at Work

[string range $ij 0 $width] " "
}
puts $row_out

}
}

The CLI’s dprint command lets you specify a slice. For example, you can type:
dprint a(1:4,1:4).

After invoking this macro, the CLI prints a two-dimensional slice (i1:i2:i3,
j1:j2:j3) of a Fortran array to a numeric field whose width is specified by the
width argument. This width doesn’t include a leading minus sign (-).

All but one line is standard Tcl. This line uses the dprint command to
obtain the value of one array element. This element’s value is then cap-
tured into a variable. The CLI capture command allows a value that is nor-
mally printed to be sent to a variable. For information on the difference
between values being displayed and values being returned, see “About CLI
Output” on page 207.

The following shows how this macro is used:

d1.<> pf2Dslice a 1 4 1 4
 0.841470956802 0.909297406673 0.141120001673-

0.756802499294
 0.909297406673-0.756802499294-0.279415488243

0.989358246326
 0.141120001673-0.279415488243 0.412118494510-

0.536572933197
-0.756802499294 0.989358246326-0.536572933197-

0.287903308868
d1.<> pf2Dslice a 1 4 1 4 1 1 17

 0.841470956802 0.909297406673 0.141120001673-
0.756802499294

 0.909297406673-0.756802499294-0.279415488243
0.989358246326

 0.141120001673-0.279415488243 0.412118494510-
0.536572933197

-0.756802499294 0.989358246326-0.536572933197-
0.287903308868
d1.<> pf2Dslice a 1 4 1 4 2 2 10

 0.84147095 0.14112000
 0.14112000 0.41211849

d1.<> pf2Dslice a 2 4 2 4 2 2 10
-0.75680249 0.98935824
 0.98935824-0.28790330

d1.<>

Writing an Array Variable to a File

TotalView Users Guide: version 8.8 219

Writing an Array Variable to a File

It often occurs that you want to save the value of an array so that you can
analyze its results at a later time. The following macro writes array values to
a file:

proc save_to_file {var fname} {
set values [capture dprint $var]
set f [open $fname w]

puts $f $values
close $f

}

The following example shows how you might use this macro. Using the exec
command tells the shell’s cat command to display the file that was just
written.

d1.<> dprint list3
list3 = {

(1) = 1 (0x00000001)
(2) = 2 (0x00000002)
(3) = 3 (0x00000003)

}
d1.<> save_to_file list3 foo
d1.<> exec cat foo
list3 = {

(1) = 1 (0x00000001)
(2) = 2 (0x00000002)
(3) = 3 (0x00000003)

}
d1.<>

Automatically Setting Breakpoints

220 Chapter 11: Seeing the CLI at Work

Automatically Setting Breakpoints

In many cases, your knowledge of what a program is doing lets you make
predictions as to where problems occurs. The following CLI macro parses
comments that you can include in a source file and, depending on the
comment’s text, sets a breakpoint or an eval point.

Following this macro is an excerpt from a program that uses it.

make_actions: Parse a source file, and insert
evaluation and breakpoints according to comments.
#
proc make_actions {{filename ""}} {

if {$filename == ""} {
puts "You need to specify a filename"
error "No filename"

}

Open the program’s source file and initialize a
few variables.

set fname [set filename]
set fsource [open $fname r]
set lineno 0
set incomment 0

Look for "signals" that indicate the type of
action point; they are buried in the comments.

while {[gets $fsource line] != –1} {
incr lineno
set bpline $lineno

Look for a one-line eval point. The
format is ... /* EVAL: some_text */.
The text after EVAL and before the "*/" in
the comment is assigned to "code".

if [regexp "/* EVAL: *(.*)*/" $line all code] {
dbreak $fname\#$bpline –e $code
continue

}

Look for a multiline eval point.
if [regexp "/* EVAL: *(.*)" $line all code] {

Append lines to "code".
while {[gets $fsource interiorline] != –1} {

incr lineno

Tabs will confuse dbreak.
regsub –all \t $interiorline \

" " interiorline

Automatically Setting Breakpoints

TotalView Users Guide: version 8.8 221

If "*/" is found, add the text to "code",
then leave the loop. Otherwise, add the
text, and continue looping.
if [regexp "(.*)*/" $interiorline \

all interiorcode]{
append code \n $interiorcode
break

} else {
append code \n $interiorline

}
}
dbreak $fname\#$bpline –e $code
continue

}
Look for a breakpoint.

if [regexp "/* STOP: .*" $line] {
dbreak $fname\#$bpline
continue

}
Look for a command to be executed by Tcl.

if [regexp "/* *CMD: *(.*)*/" $line all cmd] {
puts "CMD: [set cmd]"
eval $cmd

}
}
close $fsource

}

The only similarity between this macro and the previous three is that
almost all of the statements are Tcl. The only purely CLI commands are the
instances of the dbreak command that set eval points and breakpoints.

The following excerpt from a larger program shows how to embed com-
ments in a source file that is read by the make_actions macro:

...
struct struct_bit_fields_only {

unsigned f3 : 3;
unsigned f4 : 4;
unsigned f5 : 5;
unsigned f20 : 20;
unsigned f32 : 32;

} sbfo, *sbfop = &sbfo;
...
int main()
{

struct struct_bit_fields_only *lbfop = &sbfo;
...

int i;
int j;
sbfo.f3 = 3;
sbfo.f4 = 4;
sbfo.f5 = 5;
sbfo.f20 = 20;
sbfo.f32 = 32;

...

Automatically Setting Breakpoints

222 Chapter 11: Seeing the CLI at Work

/* TEST: Check to see if we can access all the
values */

i=i; /* STOP: */
i=1; /* EVAL: if (sbfo.f3 != 3) $stop; */
i=2; /* EVAL: if (sbfo.f4 != 4) $stop; */
i=3; /* EVAL: if (sbfo.f5 != 5) $stop; */
...
return 0;

}

The make_actions macro reads a source file one line at a time. As it reads
these lines, the regular expressions look for comments that begin with
/* STOP, /* EVAL, and /* CMD. After parsing the comment, it sets a break-
point at a stop line or an eval point at an eval line, or executes a command at
a cmd line.

Using eval points can be confusing because eval point syntax differs from
that of Tcl. In this example, the $stop function is built into the CLI. Stated
differently, you can end up with Tcl code that also contains C, C++, For-
tran, and TotalView functions, variables, and statements. Fortunately, you
only use this kind of mixture in a few places and you’ll know what you’re
doing.

TotalView Users Guide: version 8.8 223

Part V: Debugging

The chapters in this part of the TotalView Users Guide describe how you
actually go about debugging your programs. The preceding chapters
describe, for the most part, what you need to do before you get
started with TotalView. In contrast, the chapters in this part are what
TotalView is really about.

Chapter 12: Debugging Programs
This chapter describes ways to step your program’s execu-
tion, and how to halt, terminate, and restart your program.

Chapter 13: Using Groups, Processes, and Threads
In a multi-process, multi-threaded program, you may need
to finely control what is executing. This chapter tells you
how to do this.

Chapter 14: Examining and Changing Data
This chapter tells you how to examine the value stored in a
variable.

Chapter 15: Examining Arrays
Displaying information in arrays presents special problems.
This chapter tells how TotalView solves these problems.

Chapter 16: Setting Action Points
Action points let you control how your programs execute and
what happens when your program reaches statements that
you define as important. Action points also let you monitor
changes to a variable’s value.

Chapter 17: Evaluating Expressions
Many TotalView operations such as displaying variables are
actually operating upon expressions. Here’s where you’ll
find details of what TotalView does. This information is not
just for advanced users.

224

TotalView Users Guide: version 8.8 225

c
h
a
p
t
e
r

Debugging
Programs

12

This chapter explains how to perform basic debugging tasks with
TotalView. It contains the following sections:

“Searching and Looking For Program Elements” on page 225
“Editing Source Text” on page 229
“Manipulating Processes and Threads” on page 230
“Using Stepping Commands” on page 241
“Executing to a Selected Line” on page 243
“Executing Out of a Function” on page 243
“Continuing with a Specific Signal” on page 244
“Killing (Deleting) Programs” on page 245
“Restarting Programs” on page 245
“Checkpointing” on page 246
“Fine-Tuning Shared Library Use” on page 247
“Setting the Program Counter” on page 250
“Interpreting the Status and Control Registers” on page 252

Searching and Looking For Program
Elements

TotalView provides several ways for you to navigate and find information in
your source file.

Topics in this section are:

“Searching for Text” on page 226
“Looking for Functions and Variables” on page 226
“Finding the Source Code for Functions” on page 227
“Finding the Source Code for Files” on page 229

Searching and Looking For Program Elements

226 Chapter 12: Debugging Programs

“Resetting the Stack Frame” on page 229

Searching for Text

You can search for text strings in most windows using the Edit > Find com-
mand. which displays the following dialog box.

Controls in this dialog box let you:

Perform case-sensitive searches.
Continue searching from the beginning of the file if the string isn’t found
in the region beginning at the currently selected line and ending at the
last line of the file.
Keep the dialog box displayed.
Tell TotalView to search towards the bottom of the file (Down) or the top
(Up).

After you have found a string, you can find another instance of it by using
the Edit > Find Again command.

If you searched for the same string previously, you can select it from the
pulldown list on the right side of the Find text box.

Looking for Functions and Variables

Having TotalView locate a variable or a function is usually easier than scroll-
ing through your sources to look for it. Do this with the View > Lookup
Function and View > Lookup Variable commands. (See Figure 144 on
page 227.)

If TotalView doesn’t find the name and it can find something similar, it dis-
plays a dialog box that contains the names of functions that might match.
(See Figure 145 on page 227.)

If the one you want is listed, click on its name and then choose OK to dis-
play it in the Source Pane.

Figure 143: Edit > Find
Dialog Box

CLI: dprint variable

Searching and Looking For Program Elements

TotalView Users Guide: version 8.8 227

Finding the Source Code for Functions

Use the File > Open Source command to search for a function’s declaration.

This command tells TotalView to display the following dialog box:

After locating your function, TotalView displays it in the Source Pane. If you
didn’t compile the function using the –g command-line option, TotalView
displays disassembled machine code.

Figure 144: View > Lookup
Variable Dialog Box

Figure 145: Ambiguous
Function Dialog Box

CLI: dlist function-name

Figure 146: View > Lookup
Function Dialog Box

Searching and Looking For Program Elements

228 Chapter 12: Debugging Programs

When you want to return to the previous contents of the Source Pane, use
the Backward button located in the upper-right corner of the Source Pane
and just below the Stack Frame Pane. In Figure 147, a rectangle surrounds
this button.

You can also use the View > Reset command to discard the dive stack so
that the Source Pane is displaying the PC it displayed when you last
stopped execution.

Another method of locating a function’s source code is to dive into a
source statement in the Source Pane that shows the function being called.
After diving, you see the source.

Resolving Ambiguous Names
Sometimes the function name you specify is ambiguous. For example, you
might have specified the name of:

A static function, and your program contains different versions of it.
A member function in a C++ program, and multiple classes have a
member function with that name.
An overloaded function or a template function.

The following figure shows the dialog box that TotalView displays when it
encounters an ambiguous function name. You can resolve the ambiguity by
clicking the function name.

Figure 147: Undive/Dive
Controls

Figure 148: Ambiguous
Function Dialog Box

Editing Source Text

TotalView Users Guide: version 8.8 229

If the name being displayed isn’t enough to identify which name you need
to select, select the Show full path names check box to display additional
information.

Finding the Source Code for Files

You can display a file’s source code by selecting the View > Lookup
Function command and entering the file name in the dialog box shown in
the following figure.

If a header file contains source lines that produce executable code, you
can display the file’s code by typing the file name here.

Resetting the Stack Frame

After moving around your source code to look at what’s happening in dif-
ferent places, you can return to the executing line of code for the current
stack frame by selecting the View > Reset command. This command places
the PC arrow on the screen.

This command is also useful when you want to undo the effect of scrolling,
or when you move to different locations using, for example, the View >
Lookup Function command.

If the program hasn’t started running, the View > Reset command displays
the first executable line in your main program. This is useful when you are
looking at your source code and want to get back to the first statement
that your program executes.

Editing Source Text

Use the File > Edit Source command to examine the current routine in a text
editor. TotalView uses an editor launch string to determine how to start your edi-

Figure 149: View > Lookup
Function Dialog Box

Manipulating Processes and Threads

230 Chapter 12: Debugging Programs

tor. TotalView expands this string into a command that TotalView sends to the
sh shell.

The default editor is vi. However, TotalView uses the editor named in an
EDITOR environment variable, or the editor you name in the Source Code
Editor field of the File > Preferences Launch Strings Page. The online Help
for this page contains information on setting this preference.

Manipulating Processes and Threads

Topics discussed in this section are:

“Using the Toolbar to Select a Target” on page 230
“Stopping Processes and Threads” on page 231
“Updating Process Information” on page 233
“Holding and Releasing Processes and Threads” on page 233
“Using Barrier Points” on page 235
“Holding Problems” on page 236
“Examining Groups” on page 237
“Placing Processes in Groups” on page 238
“Placing Processes in Groups” on page 238
“Starting Processes and Threads” on page 238
“Creating a Process Without Starting It” on page 239
“Creating a Process by Single-Stepping” on page 239
“Stepping and Setting Breakpoints” on page 239

Using the Toolbar to Select a Target

The Process Window toolbar has three sets of buttons. The first set is a sin-
gle pulldown list. It defines the focus of the command selected in the sec-
ond set of the toolbar. The third set changes the process and thread being
displayed. The following figure shows this toolbar.

When you are doing something to a multi-process, multi-threaded program,
TotalView needs to know which processes and threads it should act on. In
the CLI, you specify this target using the dfocus command. When using the

Figure 150: The Toolbar

Manipulating Processes and Threads

TotalView Users Guide: version 8.8 231

GUI, you specify the focus using the scope pulldown. For example, if you
select a thread, and then select the Step button, TotalView steps the current
thread. In contrast, if you select Process (Workers) and then select the Go
button, TotalView tells all the processes that are in the same workers group
as the current thread to start executing. (This thread is called the thread of
interest.)

Chapter 13, “Using Groups, Processes, and Threads,” on page 253 describes how
TotalView manages processes and threads. While TotalView gives you the ability to con-
trol the precision your application requires, most applications do not need this level of
interaction. In almost all cases, using the controls in the toolbar gives you all the con-
trol you need.

Stopping Processes and Threads

To stop a group, process, or thread, select a Halt command from the
Group, Process, or Thread pulldown menu on the toolbar.

The three Halt commands differ in the scope of what they halt. In all cases,
TotalView uses the current thread, which is called the thread of interest or
TOI, to determine what else it will halt. For example, selecting Process >
Halt tells TotalView to determine the process in which the TOI is running. It
then halts this process. Similarly, if you select Group > Halt, TotalView
determines what processes are in the group in which the current thread
participates. It then stops all of these processes.

For more information on the Thread of Interest, see “Defining the GOI, POI, and TOI”
on page 253.

When you select the Halt button in the toolbar instead of the commands in
the menubar, TotalView decides what it should stop based on what is set in
the two toolbar pulldown lists.

After entering a Halt command, TotalView updates any windows that can be
updated. When you restart the process, execution continues from the point
where TotalView stopped the process.

Using the Processes/Ranks Tab

The Processes Tab, which is called a Ranks Tab if you are running an MPI
program, contains a grid. Each block in the grid represents one process.

CLI: dhalt
Halts a group, process, or thread. Setting the focus changes the
scope.

Manipulating Processes and Threads

232 Chapter 12: Debugging Programs

The color that TotalView uses to display a process indicates the process’s
state, as follows:

The following figure shows a tab with processes in three different states
(the differences are hard to see in the printed manual):

If you select a group by using the Process Window’s group selector pull-
down (see “Using the Toolbar to Select a Target” on page 230 for information),
TotalView dims the blocks for processes not in the group. (See Figure 152.)

If you click on a block, the context within the Process Window changes to
the first thread in that process.

Clicking on the P+ and P– buttons in the tab bar changes the process being
displayed within the Process Window.

Using the Threads Tab

The Threads Tab displays information about the state of your threads.
Clicking on a thread tells TotalView to shift the focus within the Process
Window to that thread. (See Figure 153 on page 233.)

Clicking on the T+ and T– buttons in the tab bar changes the thread being
displayed within the Process Window.

Color Meaning
Blue Stopped; usually due to another process or thread hitting a

breakpoint.

Orange At breakpoint.

Green All threads in the process are running or can run.

Red The Error state. Signals such as SIGSEGV, SIGBUS, and SIGFPE can
indicate an error in your program.

Gray The process has not begun running.

Figure 151: The Processes Tab

CLI: dptsets

Figure 152: The Processes Tab:
Showing Group Selection

CLI: dfocus

Manipulating Processes and Threads

TotalView Users Guide: version 8.8 233

Updating Process Information

Normally, TotalView only updates information when the thread being exe-
cuted stops executing. You can force TotalView to update a window by
using the Window > Update command. You need to use this command if
you want to see what a variable’s value is while your program is executing.

When you use this command, TotalView momentarily stops execution so that it can
obtain the information that it needs. It then restarts the thread.

Holding and Releasing Processes and Threads

Many times when you are running a multi-process or multi-threaded program,
you want to synchronize execution to the same place. You can do this manu-
ally using a hold command, or automatically by setting a barrier point.

When a process or a thread is held, any command that it receives that tells
it to execute is ignored. For example, assume that you place a hold on a
process in a control group that contains three processes. After you select
Group > Go, two of the three processes resume executing. The held pro-
cess ignores the Go command.

At a later time, you will want to run what is being held. Do this using a
Release command. When you release a process or a thread, you are telling
it that it can run. But you still need to tell it to execute, which means that it
is waiting to receive an execution command, such as Go, Out, or Step.

Manually holding and releasing processes and threads is useful in the fol-
lowing instances:

When you need to run a subset of the processes and threads. You can
manually hold all but the ones you want to run.
When a process or thread is held at a barrier point and you want to run it
without first running all the other processes or threads in the group to
that barrier. In this case, you release the process or the thread manually,
and then run it.

TotalView can also hold a process or thread if it stops at a barrier break-
point. You can manually release a process or thread being held at a barrier
breakpoint. See “Setting Barrier Points” on page 364 for more information on
manually holding and releasing barrier breakpoints.

When TotalView is holding a process, the Root and Process Windows dis-
play a held indicator, which is the uppercase letter H. When TotalView is
holding a thread, it displays a lowercase h.

Figure 153: The Threads Tab

Manipulating Processes and Threads

234 Chapter 12: Debugging Programs

You can hold or release a thread, process, or group of processes in one of
the following ways:

You can hold a group of processes using the Group > Hold command.
You can release a group of processes using the Group > Release command.
You can toggle the hold/release state of a process by selecting and clear-
ing the Process > Hold command.
You can toggle the hold/release state of a thread by selecting and clear-
ing the Thread > Hold command.

If a process or a thread is running when you use a hold or release com-
mand, TotalView stops the process or thread, and then holds it.TotalView
lets you hold and release processes independently from threads.

The Process pulldown menu contains a Hold Threads and a Release Threads
command. Although they appear to do the same thing, they are used in
slightly different ways. When you use the Hold Threads command on a
multi-threaded process, you place a hold on all threads. This is seldom
what you want as you really do want something to run. After selecting this
command, go to the thread that you want to run and then clear the Thread
> Hold command so that TotalView lets it run. This may appear awkward,
but it is actually an easy way to select one or two threads when your pro-
gram has a lot of threads. You can verify that you’re doing the right thing by
looking at the thread’s status in the Root Window.

The following set of drawings presents examples of using hold commands:

CLI: dhold and dunhold
Setting the focus changes the scope.

CLI: dhold –thread
dhold –process
dunhold –thread

Held/Release State What Can Be Run Using Process > Go

This figure shows a process with three threads. Before you do
anything, all threads in the process can be run.

Select the Process > Hold toggle. The blue indicates that you
held the process. (Or, at least its in blue if you are viewing
this online.)
Nothing runs when you select Process > Go.

Manipulating Processes and Threads

TotalView Users Guide: version 8.8 235

Using Barrier Points

Because threads and processes are often executing different instructions,
keeping threads and processes together is difficult. The best strategy is to
define places where the program can run freely and places where you need
control. This is where barrier points come in.

To keep things simple, this section only discusses multi-process programs.
You can do the same types of operations when debugging multi-threaded
programs.

Why breakpoints
don’t work

(part 1)

If you set a breakpoint that stops all processes when it is hit and you let
your processes run using the Group > Go command, you can get lucky and
all of your threads will be at the breakpoint. What’s more likely is that some
processes won’t have reached the breakpoint and TotalView will stop them
wherever they happen to be. To get your processes synchronized, you need
to find out which ones didn’t get there and then individually get them to
the breakpoint using the Process > Go command. You can’t use the
Group > Go command since this also runs the processes stopped at the
breakpoint.

Why breakpoints
don’t work

(part 2)

If you set the breakpoint’s property so that only the process hitting the
breakpoint stops, you have a better chance of getting processes there.
However, you should not have other breakpoints between where the pro-
gram is currently at and this breakpoint. If processes hit these breakpoints,
you are once again left running individual processes to the breakpoint.

Why single
stepping doesn’t

work

Single stepping is just too tedious if you have a long way to go to get to
your synchronization point, and stepping just won’t work if your processes
don’t execute exactly the same code.

Why barrier
points work

If you use a barrier point, you can use the Group > Go command as many
times as it takes to get all of your processes to the barrier, and you won’t
have to worry about a process running past the barrier.

Go to the Threads menu. The button next to the Hold
command isn’t selected. This is because the thread hold state
is independent from the process hold state.
Select it. The circle indicates that thread 1 is held. At this
time, there are two different holds on thread 1. One is at the
process level; the other is at thread level.
Nothing will run when you select Process > Go.

Select the Process > Hold command.
Select Process > Go. The second and third threads run.

Select Process > Release Threads. This releases the hold
placed on the first thread by the Thread > Hold command.
After you select Process > Go, all threads run.

Held/Release State What Can Be Run Using Process > Go

Manipulating Processes and Threads

236 Chapter 12: Debugging Programs

The Root Window shows you which processes have hit the barrier. It marks
all held processes with the letter H (meaning hold) in the column immedi-
ately to the right of the state codes. When all processes reach the barrier,
TotalView removes all holds.

Holding Problems

Creating a barrier point tells TotalView to hold a process when it reaches the
barrier. Other processes that can reach the barrier but aren’t yet at it con-
tinue executing. One-by-one, processes reach the barrier and, when they
do, TotalView holds them.

When a process is held, it ignores commands that tell it to execute. This
means, for example, that you can’t tell it to go or to step. If, for some rea-
son, you want the process to execute, you can manually release it using
either the Group > Release or Process > Release Threads command.

When all processes that share a barrier reach it, TotalView changes their
state from held to released, which means that they no longer ignore a com-
mand that tells it to begin executing.

The following figure shows seven processes that are sharing the same bar-
rier. (Processes that aren’t affected by the barrier aren’t shown.)

First block: All seven processes are running freely.
Second block: One process hits the barrier and is held. Six processes are
executing.
Third block: Five of the processes have now hit the barrier and are being
held. Two are executing.
Fourth block: All processes have hit the barrier. Because TotalView isn’t
waiting for anything else to reach the barrier, it changes the processes’
states to released. Although the processes are released, none are execut-
ing. (See Figure 154.)

Figure 154: Running
To Barriers Barrier Barrier Barrier

Running Freely One Held None Held

Barrier

Five Held
All Released

Manipulating Processes and Threads

TotalView Users Guide: version 8.8 237

Examining Groups

When you debug a multi-process program, TotalView adds processes to
both a control and a share group as the process starts. These groups are
not related to either UNIX process groups or PVM groups. (See Chapter 2,
“About Threads, Processes, and Groups,” on page 15 for information on groups.)

Because a program can have more than one control group and more than
one share group, TotalView decides where to place a process based on the
type of system call—which can either be fork() or execve()—that created or
changed the process. The two types of process groups are:

Control Group The parent process and all related processes. A control
group includes children that a process forks (pro-
cesses that share the same source code as the parent).
It also includes forked children that subsequently call a
function such as execve(). That is, a control group can
contain processes that don’t share the same source
code as the parent.

Control groups also include processes created in paral-
lel programming disciplines like MPI.

Share Group The set of processes in a control group that shares the
same source code. Members of the same share group
share action points.

See Chapter 13, “Using Groups, Processes, and Threads,” on page 253 for a complete
discussion of groups.

TotalView automatically creates share groups when your processes fork chil-
dren that call the execve() function, or when your program creates processes
that use the same code as some parallel programming models such as MPI
do.

TotalView names processes according to the name of the source program,
using the following naming rules:

TotalView names the parent process after the source program.
The name for forked child processes differs from the parent in that
TotalView appends a numeric suffix (.n). If you’re running an MPI pro-
gram, the numeric suffix is the process’s rank in COMM_WORLD.
If a child process calls the execve() function after it is forked, TotalView
places a new executable name in angle brackets (<>).

In the following figure, assume that the generate process doesn’t fork any
children, and that the filter process forks two child processes. Later, the
first child forks another child, and then calls the execve() function to exe-
cute the expr program. In this figure, the middle column shows the names
that TotalView uses. (See Figure 155 on page 238.

Manipulating Processes and Threads

238 Chapter 12: Debugging Programs

Placing Processes in Groups

TotalView uses your executable’s name to determine the share group that
the program belongs to. If the path names are identical, TotalView assumes
that they are the same program. If the path names differ, TotalView
assumes that they are different, even if the file name in the path name is
the same, and places them in different share groups.

Starting Processes and Threads

To start a process, select a Go command from the Group, Process, or
Thread pulldown menus.

After you select a Go command, TotalView decides what to run based on
the current thread. It uses this thread, which is called the Thread of Interest
(TOI), to decide what other threads it should run. For example, if you select
Group > Go, TotalView continues all threads in the current group that are
associated with this thread.

The commands you will use most often are Group > Go and Process > Go.
The Group > Go command creates and starts the current process and all
other processes in the multi-process program. There are some limitations,
however. TotalView only resumes a process if the following are true:

The process is not being held.
The process already exists and is stopped.
The process is at a breakpoint.

Using a Group > Go command on a process that’s already running starts
the other members of the process’s control group.

If the process hasn’t yet been created, Go commands creates and starts it.
Starting a process means that all threads in the process resume executing
unless you are individually holding a thread.

Figure 155: Control and
Share Groups Example

Process Groups Process Names Relationship

filter
filter.1
filter.2
filter<expr>.1.1

generate

parent process #1
child process #1
child process #2
grandchild process #1

parent process #2

Share Group 1
Control
Group 1

Share Group 2

Control
Group 2 Share Group 3

CLI: dfocus g dgo
Abbreviation: G

CLI: dgo

Manipulating Processes and Threads

TotalView Users Guide: version 8.8 239

TotalView disables the Thread > Go command if asynchronous thread control is not
available. If you enter a thread-level command in the CLI when asynchronous thread
controls aren’t available, TotalView tries to perform an equivalent action. For example, it
continues a process instead of a thread.

For a single-process program, the Process > Go and Group > Go com-
mands are equivalent. For a single-threaded process, the Process > Go and
Thread > Go commands are equivalent.

Creating a Process Without Starting It

The Process > Create command creates a process and stops it before the
first statement in your program executes. If you link a program with shared
libraries, TotalView allows the dynamic loader to map into these libraries.
Creating a process without starting it is useful when you need to do the fol-
lowing:

Create watchpoints or change the values of global variables after a pro-
cess is created, but before it runs.
Debug C++ static constructor code.

Creating a Process by Single-Stepping

The TotalView single-stepping commands lets you create a process and run
it to the beginning of your programs. The single-stepping commands avail-
able from the Process menu are as shown in the following table:

If a group-level or thread-level stepping command creates a process, the
behavior is the same as if it were a process-level command.

Chapter 13, “Using Groups, Processes, and Threads,” on page 253 contains a detailed
discussion of setting the focus for stepping commands.

Stepping and Setting Breakpoints

Several of the single-stepping commands require that you select a source
line or machine instruction in the Source Pane. To select a source line,
place the cursor over the line and click your left mouse button. If you select

CLI: dstepi
While there is no CLI equivalent to the Process > Create command,
executing the dstepi command produces the same effect.

GUI command CLI command Creates the process and ...
Process > Step dfocus p dstep Runs it to the first line of the main() routine.
Process > Next dfocus p dnext Runs it to the first line of the main() routine;

this is the same as Process > Step.
Process >

Step Instruction
dfocus p dstepi Stops it before any of your program executes.

Process >
Next Instruction

dfocus p dnexti Runs it to the first line of the main() routine.
This is the same as Process > Step.

Manipulating Processes and Threads

240 Chapter 12: Debugging Programs

a source line that has more than one instantiation, TotalView will try to do
the right thing. For example, if you select a line within a template so you
can set a breakpoint on it, you’ll actually set a breakpoint on all of the tem-
plate’s instantiations. If this isn’t what you want, select the Location button
in the Action Point > Properties Dialog Box to change which instantiations
will have a breakpoint. (See “Setting Breakpoints and Barriers” on page 353.)
(See Figure 156.)

Similarly, if TotalView cannot figure out which instantiation to set a break-
point at, it will display its Address Dialog Box. (See Figure 157.)

Figure 156: Action Point and
Addresses Dialog Boxes

Figure 157: Ambiguous
Address Dialog Box

Using Stepping Commands

TotalView Users Guide: version 8.8 241

Using Stepping Commands

While different programs have different requirements, the most common
stepping mode is to set group focus to Control and the target to Process or
Group. You can now select stepping commands from the Process or Group
menus or use commands in the toolbar.

The following figure illustrates stepping commands.

The arrow indicates that the PC is at line 15. The four stepping commands
do the following:

Next executes line 15. After stepping, the PC is at line 16.
Step moves into the sub2() function. The PC is at line 21.
Run To executes all lines until the PC reaches the selected line, which is
line 23.
Out executes all statements within sub1() and exits from the function. The
PC is at line 9. If you now execute a Step command, TotalView steps into
sub3().

Remember the following things about single-stepping commands:

To cancel a single-step command, select Group > Halt or Process > Halt.

CLI: dfocus g
dfocus p

Figure 158: Stepping
Illustrated

Out

Next

Step Run To

CLI: dhalt

Using Stepping Commands

242 Chapter 12: Debugging Programs

If your program reaches a breakpoint while stepping over a function,
TotalView cancels the operation and your program stops at the break-
point.
If you enter a source-line stepping command and the primary thread is
executing in a function that has no source-line information, TotalView
performs an assembler-level stepping command.
When TotalView steps through your code, it steps one line at a time. This
means that if you have more than one statement on a line, a step in-
struction executes all of the instructions on that line.

Stepping into Function Calls

The stepping commands execute one line in your program. If you are using the
CLI, you can use a numeric argument that indicates how many source lines
TotalView steps. For example, here’s the CLI instruction for stepping three
lines:

dstep 3

If the source line or instruction contains a function call, TotalView steps
into it. If TotalView can’t find the source code and the function was com-
piled with –g, it displays the function’s machine instructions.

You might not realize that your program is calling a function. For example, if
you overloaded an operator, you’ll step into the code that defines the over-
loaded operator.

If the function being stepped into wasn’t compiled with the –g command-line option,
TotalView always steps over the function.

The GUI has eight Step commands and eight Step Instruction commands.
These commands are located on the Group, Process, and Thread pull-
downs. The difference between them is the focus.

Stepping Over Function Calls

When you step over a function, TotalView stops execution when the pri-
mary thread returns from the function and reaches the source line or
instruction after the function call.

The GUI has eight Next commands that execute a single source line while
stepping over functions, and eight Next Instruction commands that execute
a single machine instruction while stepping over functions. These com-
mands are on the Group, Process, and Thread menus.

CLI: dfocus ... dstep
dfocus ... dstepi

CLI: dfocus ... dnext
dfocus ... dnexti

Executing to a Selected Line

TotalView Users Guide: version 8.8 243

If the PC is in assembler code—this can happen, for example, if you halt
your program while it’s executing in a library—a Next operation executes
the next instruction. If you want to execute out of the assembler code so
you’re back in your code, select the Out command. You might need to
select Out a couple of times until you’re back to where you want to be.

Executing to a Selected Line

If you don’t need to stop execution every time execution reaches a specific
line, you can tell TotalView to run your program to a selected line or
machine instruction. After selecting the line on which you want the pro-
gram to stop, invoke one of the eight Run To commands defined within the
GUI. These commands are on the Group, Process, and Thread menus.

Executing to a selected line is discussed in greater depth in Chapter 13,
“Using Groups, Processes, and Threads,” on page 253.

If your program reaches a breakpoint while running to a selected line,
TotalView stops at that breakpoint.

If your program calls recursive functions, you can select a nested stack
frame in the Stack Trace Pane. When you do this, TotalView determines
where to stop execution by looking at the following:

The frame pointer (FP) of the selected stack frame.
The selected source line or instruction.

Executing Out of a Function

You can step your program out of a function by using the Out commands.
The eight Out commands in the GUI are located on the Group, Process, and
Thread menus.

CLI: dfocus ... duntil

CLI: dup and ddown

CLI: dfocus ... dout

Continuing with a Specific Signal

244 Chapter 12: Debugging Programs

If the source line that is the goal of the Out operation has more than one
statement, TotalView will stop execution just after the routine from which it
just emerged. For example, suppose that the following is your source line:

routine1; routine2;

Suppose you step into routine1, then use an Out command. While the PC
arrow in the Source Pane still points to this same source line, the actual PC
is just after routine1. This means that if you use a step command, you will
step into routine2.

The PC arrow does not move when the source line only has one statement
on it. The internal PC does, of course, change.

You can also return out of several functions at once, by selecting the rou-
tine in the Stack Trace Pane that you want to go to, and then selecting an
Out command.

If your program calls recursive functions, you can select a nested stack
frame in the Stack Trace Pane to indicate which instance you are running
out of.

Continuing with a Specific Signal

Letting your program continue after sending it a signal is useful when your
program contains a signal handler. Here’s how you tell TotalView to do this:

1 Select the Process Window’s Thread > Continuation Signal command.

2 Select the signal to be sent to the thread and then select OK.
The continuation signal is set for the thread contained in the current Pro-
cess Window. If the operating system can deliver multi-threaded signals,
you can set a separate continuation signal for each thread. If it can’t, this
command clears continuation signals set for other threads in the process.

Figure 159: Thread >
Continuation Signal
Dialog Box

Killing (Deleting) Programs

TotalView Users Guide: version 8.8 245

3 Continue execution of your program with commands such as Process >
Go, Step, Next, or Detach.
TotalView continues the threads and sends the specified signals to your pro-
cess.

To clear the continuation signal, select signal 0 from this dialog box.

You can change the way TotalView handles a signal by setting the
TV::signal_handling_mode variable in a .tvdrc startup file. For more infor-
mation, see Chapter 4 of the “TotalView Reference Guide.”

Killing (Deleting) Programs

To kill (or delete) all the processes in a control group, use the Group > Kill
command. The next time you start the program, for example, by using the
Process > Go command, TotalView creates and starts a fresh master pro-
cess.

Restarting Programs

You can use the Group > Restart command to restart a program that is run-
ning or one that is stopped but hasn’t exited.

If the process is part of a multi-process program, TotalView deletes all related
processes, restarts the master process, and runs the newly created program.

The Group > Restart command is equivalent to the Group > Kill command
followed by the Process > Go command.

CLI: dfocus g dkill

CLI: drerun

Checkpointing

246 Chapter 12: Debugging Programs

Checkpointing

On IBM RS/6000 platforms, you can save the state of selected processes
and then use this saved information to restart the processes from the posi-
tion where they were saved. For more information, see the Process Window
Tools > Create Checkpoint and Tools > Restart Checkpoint commands in the
online Help. (See Figure 160.)

CLI: dcheckpoint
drestart

Figure 160: Create Checkpoint
and Restart Checkpoint
Dialog Boxes

Fine-Tuning Shared Library Use

TotalView Users Guide: version 8.8 247

Fine-Tuning Shared Library Use

When TotalView encounters a reference to a shared library, it normally reads
all of that library’s symbols. In some cases, you might need to explicitly
read in this library’s information before TotalView automatically reads it.

On the other hand, you may not want TotalView to read and process a
library’s loader and debugging symbols. In most cases, reading these sym-
bols occurs quickly. However, if your program uses large libraries, you can
increase performance by telling TotalView not to read these symbols.

For more information, see “Preloading Shared Libraries” on page 247 and
“Controlling Which Symbols TotalView Reads” on page 248.

Preloading Shared Libraries

As your program executes, it can call the dlopen() function to access code
contained in shared libraries. In some cases, you might need to do some-
thing from within TotalView that requires you to preload library information.
For example, you might need to refer to one of a library’s functions in an
eval point or in a Tools > Evaluate command. If you use the function’s
name before TotalView reads the dynamic library, TotalView displays an
error message.

Use the Tools > Debugger Loaded Libraries command to tell the debugger
to open a library.

After selecting this command, TotalView displays the following dialog box:

CLI: ddlopen
This CLI command gives you additional ways to control how a
library’s symbols are used.

Figure 161: Tools > Debugger
Loaded Libraries Dialog
Box

Fine-Tuning Shared Library Use

248 Chapter 12: Debugging Programs

Selecting the Load button tells TotalView to display a file explorer dialog
box that lets you navigate through your computer’s file system to locate
the library. After selecting a library, TotalView reads it and displays a ques-
tion box that lets you stop execution to set a breakpoint:

TotalView might not read in information symbol and debugging information when you
use this command. See “Controlling Which Symbols TotalView Reads” on page 248 for
more information.

Controlling Which Symbols TotalView Reads

When debugging large programs with large libraries, reading and parsing sym-
bols can impact performance. This section describes how you can minimize
the impact that reading this information has on your debugging session.

Using the preference settings and variables described in this section you can control the
time it takes to read in the symbol table. For most programs, even large ones, changing
the settings is often inconsequential, but if you are debugging a very large program with
large libraries, you can achieve significant performance improvements.

A shared library contains, among other things, loader and debugging sym-
bols. Typically, loader symbols are read quite quickly. Debugging symbols
can require considerable processing. The default behavior is to read all
symbols. You can change this behavior by telling TotalView to only read in
loader symbols or even that it should not read in any symbols.

Saying “TotalView reads all symbols” isn’t quite true as TotalView often just reads in
loader symbols for some libraries. For example, it only reads in loader symbols if the
library resides in the /usr/lib directory. (These libraries are typically those provided with
the operating system.) You can override this behavior by adding a library name to the
All Symbols list that is described in the next section.

Specifying Which Libraries are Read
After invoking the File > Preferences command, select the Dynamic Librar-
ies Page. (See Figure 163 on page 249.)

The lower portion of this page lets you enter the names of libraries for
which you need to manage the information that TotalView reads.

Figure 162: Stopping to Set a
Breakpoint Question Box

Fine-Tuning Shared Library Use

TotalView Users Guide: version 8.8 249

When you enter a library name, you can use the * (asterisk) and ? (question
mark) wildcard characters. These characters have their standard meaning.
Placing entries into these areas does the following:

all symbols This is the default operation. You only need to enter a
library name here if it would be excluded by a wildcard
in the loader symbols and no symbols areas.

loader symbols TotalView reads loader symbols from these libraries. If
your program uses a number of large shared libraries
that you will not be debugging, you might set this to as-
terisk (*). You then enter the names of DLLs that you
need to debug in the all symbols area.

no symbols Normally, you wouldn’t put anything on this list since
TotalView might not be able to create a backtrace
through a library if it doesn’t have these symbols. How-
ever, you can increase performance if you place the
names of your largest libraries here.

When reading a library, TotalView looks at these lists in the following order:

1 all symbols
2 loader symbols
3 no symbols

If a library is found in more than one area, it does the first thing it is told to
do and ignores any other requests. For example, after TotalView reads a

Figure 163: File >
Preferences: Dynamic
Libraries Page

Setting the Program Counter

250 Chapter 12: Debugging Programs

library’s symbols, it cannot honor a request to not load in symbols, so it
ignores a request to not read them.

See the online Help for additional information.

If your program stops in a library that has not already had its symbols read,
TotalView reads the library’s symbols. For example, if your program SEGVs
in a library, TotalView reads the symbols from that library before it reports
the error. In all cases, however, TotalView always reads the loader symbols
for shared system libraries.

Reading Excluded Information
While you are debugging your program, you might find that you do need
the symbol information that you told TotalView that it shouldn’t read. Tell
TotalView to read them by right-clicking your mouse in the Stack Trace
Pane and then selecting the Load All Symbols in Stack command from the
context menu. (See Figure 164.)

After selecting this command, TotalView examines all active stack frames
and, if it finds unread libraries in any frame, TotalView reads them.

Setting the Program Counter

TotalView lets you resume execution at a different statement than the one
at which it stopped execution by resetting the value of the program
counter (PC). For example, you might want to skip over some code, execute

CLI: dset TV::dll_read_all_symbols
dset TV::dll_read_loader_symbols_only
dset TV::dll_read_no_symbols

Figure 164: Load All Symbols
in Stack Context menu

CLI: TV::read_symbols
This CLI command also gives you finer control over how TotalView
reads in library information.

Setting the Program Counter

TotalView Users Guide: version 8.8 251

some code again after changing certain variables, or restart a thread that is
in an error state.

Setting the PC can be crucial when you want to restart a thread that is in an
error state. Although the PC symbol in the line number area points to the
source statement that caused the error, the PC actually points to the failed
machine instruction in the source statement. You need to explicitly reset
the PC to the correct instruction. (You can verify the actual location of the
PC before and after resetting it by displaying it in the Stack Frame Pane, or
displaying both source and assembler code in the Source Pane.)

In TotalView, you can set the PC of a stopped thread to a selected source
line or a selected instruction. When you set the PC to a selected line, the
PC points to the memory location where the statement begins. For most
situations, setting the PC to a selected line of source code is all you need
to do.

To set the PC to a selected line:

1 If you need to set the PC to a location somewhere in a line of source code,
select the View > Source As > Both command.
TotalView responds by displaying assembler code.

2 Select the source line or instruction in the Source Pane.
TotalView highlights the line.

3 Select the Thread > Set PC command.
TotalView asks for confirmation, resets the PC, and moves the PC symbol
to the selected line.

When you select a line and ask TotalView to set the PC to that line,
TotalView attempts to force the thread to continue execution at that state-
ment in the currently selected stack frame. If the currently selected stack
frame is not the top stack frame, TotalView asks if it can unwind the stack:

This frame is buried. Should we attempt to unwind the
stack?

If you select Yes, TotalView discards deeper stack frames (that is, all stack
frames that are more deeply nested than the selected stack frame) and
resets the machine registers to their values for the selected frame. If you
select No, TotalView sets the PC to the selected line, but it leaves the stack
and registers in their current state. Since you can’t assume that the stack
and registers have the right values, selecting No is almost always the wrong
thing to do.

Interpreting the Status and Control Registers

252 Chapter 12: Debugging Programs

Interpreting the
Status and Control Registers

The Stack Frame Pane in the Process Window lists the contents of CPU reg-
isters for the selected frame—you might need to scroll past the stack local
variables to see them.

For your convenience, TotalView displays the bit settings of many CPU regis-
ters symbolically. For example, TotalView symbolically displays registers that
control rounding and exception enable modes. You can edit the values of
these registers and then resume program execution. For example, you might
do this to examine the behavior of your program with a different rounding
mode.

Since the registers that are displayed vary from platform to platform, see
“Architectures” in the TotalView Reference Guide for information on how
TotalView displays this information on your CPU. For general information
on editing the value of variables (including registers), see “Displaying Areas of
Memory” on page 298. To learn about the meaning of these registers, see
the documentation for your CPU.

CLI: dprint register
You must quote the initial $ character in the register name; for
example, dprint \$r1.

TotalView Users Guide: version 8.8 253

c
h
a
p
t
e
r

Using Groups, Processes,
and Threads

13

The specifics of how multi-process, multi-threaded programs exe-
cute differ greatly from platform to platform and environment to
environment, but all share some general characteristics. This chap-
ter discusses the TotalView process/thread model. It also describes
the way in which you tell the GUI and the CLI what processes and
threads to direct a command to.

This chapter contains the following sections:

“Defining the GOI, POI, and TOI” on page 253
“Setting a Breakpoint” on page 254
“Stepping (Part I)” on page 255
“Using P/T Set Controls” on page 258
“Setting Process and Thread Focus” on page 259
“Setting Group Focus” on page 264
“Stepping (Part II): Examples” on page 275
“Using P/T Set Operators” on page 277
“Creating Custom Groups” on page 278

Defining the GOI, POI, and TOI

This chapter consistently uses the following three related acronyms:

GOI—Group of Interest
POI—Process of Interest
TOI—Thread of Interest

These terms are important in the TotalView process/thread model because
TotalView must determine the scope of what it does when it executes a
command. For example, Chapter 2, “About Threads, Processes, and Groups”

Setting a Breakpoint

254 Chapter 13: Using Groups, Processes, and Threads

introduced the types of groups contained with TotalView. That chapter
ignored what happens when you execute a TotalView command on a group.
For example, what does “stepping a group” actually mean? What happens
to processes and threads that aren’t in this group?

Associated with these three terms is a fourth term: arena. The arena is the
collection of processes, threads, and groups that are affected by a debug-
ging command. This collection is called an arena list.

In the GUI, the arena is most often set using the pulldown list in the tool-
bar. You can set the arena using commands in the menubar. For example,
there are eight next commands. The difference between them is the arena;
that is, the difference between the next commands is the processes and
threads that are the target of what the next command runs.

When TotalView executes any action command, the arena decides the
scope of what can run. It doesn’t, however, determine what does run.
Depending on the command, TotalView determines the TOI, POI, or GOI,
and then executes the command’s action on that thread, process, or
group. For example, suppose TotalView steps the current control group:

TotalView needs to know what the TOI is so that it can determine what
threads are in the lockstep group—TotalView only lets you step a lock-
step group.
The lockstep group is part of a share group.
This share group is also contained in a control group.

By knowing what the TOI is, the GUI also knows what the GOI is. This is
important because, while TotalView knows what it will step (the threads in
the lockstep group), it also knows what it will allow to run freely while it is
stepping these threads. In the CLI, the P/T set determines the TOI.

Setting a Breakpoint

You can set breakpoints in your program by selecting the boxed line num-
bers in the Source Code pane of a Process window. A boxed line number
indicates that the line generates executable code. A icon masking a
line number indicates that a breakpoint is set on the line. Selecting the

 icon clears the breakpoint.

When a program reaches a breakpoint, it stops. You can let the program
resume execution in any of the following ways:

Use the single-step commands described in “Using Stepping Commands” on
page 241.
Use the set program counter command to resume program execution at
a specific source line, machine instruction, or absolute hexadecimal
value. See “Setting the Program Counter” on page 250.

Stepping (Part I)

TotalView Users Guide: version 8.8 255

Set breakpoints at lines you choose, and let your program execute to
that breakpoint. See “Setting Breakpoints and Barriers” on page 353.
Set conditional breakpoints that cause a program to stop after it evalu-
ates a condition that you define, for example “stop when a value is less
than eight. See “Setting Eval Points” on page 369.

TotalView provides additional features for working with breakpoints, pro-
cess barrier breakpoints, and eval points. For more information, see Chap-
ter 16, “Setting Action Points,” on page 351.

Stepping (Part I)

You can use TotalView stepping commands to:

Execute one source line or machine instruction at a time; for example,
Process > Step in the GUI and dstep in the CLI.

Run to a selected line, which acts like a temporary breakpoint; for exam-
ple, Process > Run To.

Run until a function call returns; for example, Process > Out.

In all cases, stepping commands operate on the Thread of Interest (TOI). In
the GUI, the TOI is the selected thread in the current Process Window. In
the CLI, the TOI is the thread that TotalView uses to determine the scope of
the stepping operation.

On all platforms except SPARC Solaris, TotalView uses smart single-stepping
to speed up stepping of one-line statements that contain loops and condi-
tions, such as Fortran 90 array assignment statements. Smart stepping
occurs when TotalView realizes that it doesn’t need to step through an
instruction. For example, assume that you have the following statements:

integer iarray (1000,1000,1000)
iarray = 0

These two statements define one billion scalar assignments. If your computer
steps every instruction, you will probably never get past this statement. Smart
stepping means that TotalView single-steps through the assignment statement
at a speed that is very close to your computer’s native speed.

CLI: dstep

CLI: duntil

CLI: dout

Stepping (Part I)

256 Chapter 13: Using Groups, Processes, and Threads

Other topics in this section are:

“Understanding Group Widths” on page 256
“Understanding Process Width” on page 256
“Understanding Thread Width” on page 257
“Using Run To and duntil Commands” on page 257

Understanding Group Widths

TotalView behavior when stepping at group width depends on whether the
Group of Interest (GOI) is a process group or a thread group. In the follow-
ing lists, goal means the place at which things should stop executing. For
example, if you selected a step command, the goal is the next line. If you
selected a run to command, the goal is the selected line.

The actions that TotalView performs on the GOI are dependent on the type
of process group that is the focus, as follows:

Process group—TotalView examines the group, and identifies which of its
processes has a thread stopped at the same location as the TOI (a match-
ing process). TotalView runs these matching processes until one of its
threads arrives at the goal. When this happens, TotalView stops the
thread’s process. The command finishes when it has stopped all of these
matching processes.
Thread group—TotalView runs all processes in the control group. However,
as each thread arrives at the goal, TotalView only stops that thread; the
rest of the threads in the same process continue executing. The com-
mand finishes when all threads in the GOI arrive at the goal. When the
command finishes, TotalView stops all processes in the control group.
TotalView doesn’t wait for threads that are not in the same share group as
the TOI, since they are executing different code and can never arrive at the
goal.

Understanding Process Width

TotalView behavior when stepping at process width (which is the default)
depends on whether the Group of Interest (GOI) is a process group or a
thread group.

The actions that TotalView performs on the GOI are dependent on the type
of process group that is the focus, as follows:

Process group—TotalView runs all threads in the process, and execution
continues until the TOI arrives at its goal, which can be the next state-
ment, the next instruction, and so on. Only when the TOI reaches the
goal does TotalView stop the other threads in the process.
Thread group—TotalView lets all threads in the GOI and all manager threads
run. As each member of the GOI arrives at the goal, TotalView stops it; the
rest of the threads continue executing. The command finishes when all
members of the GOI arrive at the goal. At that point, TotalView stops the
whole process.

Stepping (Part I)

TotalView Users Guide: version 8.8 257

Understanding Thread Width

When TotalView performs a stepping command, it decides what it steps
based on the width. Using the toolbar, you specify width using the left-most
pulldown. This pulldown has three items: Group, Process, and Thread.

Stepping at thread width tells TotalView to only run that thread. It does not
step other threads. In contrast, process width tells TotalView to run all
threads in the process that are allowed to run while the TOI is stepped.
While TotalView is stepping the thread, manager threads run freely.

Stepping a thread isn’t the same as stepping a thread’s process, because a
process can have more than one thread.

Thread-stepping is not implemented on Sun platforms. On SGI platforms, thread-step-
ping is not available with pthread programs. If, however, your program’s parallelism is
based on SGI’s sprocs, thread-stepping is available.

Thread-level single-step operations can fail to complete if the TOI needs to
synchronize with a thread that isn’t running. For example, if the TOI
requires a lock that another held thread owns, and steps over a call that
tries to acquire the lock, the primary thread can’t continue successfully.
You must allow the other thread to run in order to release the lock. In this
case, you use process-width stepping instead.

Using Run To and duntil Commands

The duntil and Run To commands differ from other step commands when
you apply them to a process group. (These commands tell TotalView to
execute program statements until it reaches the selected statement.) When
used with a process group, TotalView identifies all processes in the group
that already have a thread stopped at the goal. These are the matching pro-
cesses. TotalView then runs only nonmatching processes. Whenever a
thread arrives at the goal, TotalView stops its process. The command fin-
ishes when it has stopped all members of the group. This lets you synchro-
nize all the processes in a group in preparation for group-stepping them.

You need to know the following if you’re running at process width:

Process group If the Thread of Interest (TOI) is already at the goal lo-
cation, TotalView steps the TOI past the line before the
process runs. This lets you use the Run To command
repeatedly in loops.

Thread group If any thread in the process is already at the goal,
TotalView temporarily holds it while other threads in
the process run. After all threads in the thread group
reach the goal, TotalView stops the process. This lets
you synchronize the threads in the POI at a source line.

Using P/T Set Controls

258 Chapter 13: Using Groups, Processes, and Threads

If you’re running at group width:

Process group TotalView examines each process in the process and
share group to determine whether at least one thread
is already at the goal. If a thread is at the goal,
TotalView holds its process. Other processes are al-
lowed to run. When at least one thread from each of
these processes is held, the command completes. This
lets you synchronize at least one thread in each of
these processes at a source line. If you’re running a
control group, this synchronizes all processes in the
share group.

Thread group TotalView examines all the threads in the thread group
that are in the same share group as the TOI to deter-
mine whether a thread is already at the goal. If it is,
TotalView holds it. Other threads are allowed to run.
When all of the threads in the TOI’s share group reach
the goal, TotalView stops the TOI’s control group and the
command completes. This lets you synchronize thread
group members. If you’re running a workers group, this
synchronizes all worker threads in the share group.

The process stops when the TOI and at least one thread from each process
in the group or process being run reach the command stopping point. This
lets you synchronize a group of processes and bring them to one location.

You can also run to a selected line in a nested stack frame, as follows:

1 Select a nested frame in the Stack Trace Pane.
2 Select a source line or instruction in the function.
3 Enter a Run To command.

TotalView executes the primary thread until it reaches the selected line in
the selected stack frame.

Using P/T Set Controls

A few GUI windows have P/T set control elements. For example, the follow-
ing figure shows the top portion of the Process Window.

Figure 165: The P/T Set
Control in the Process
Window

Setting Process and Thread Focus

TotalView Users Guide: version 8.8 259

When you select a scope modifier, you are telling TotalView that when you
press one of the remaining buttons on the toolbar, this element names the
focus on which TotalView acts. For example, if you select a thread and then
select Step, TotalView steps the current thread. If Process (workers) is
selected and you select Halt, TotalView halts all processes associated with
the current threads workers group. If you were running a multi-process pro-
gram, other processes continue to execute.

The Processes/Ranks Tab shows you which processes or ranks are mem-
bers of the group. For more information, see “Using the Toolbar to Select a Tar-
get” on page 230.

Setting Process and Thread Focus

The previous sections emphasize the GUI; this section and the ones that follow empha-
size the CLI. Here you will find information on how to have full asynchronous debug-
ging control over your program. Fortunately, having this level of control is seldom neces-
sary. In other words, don’t read the rest of this chapter unless you have to.

When TotalView executes a command, it must decide which processes and
threads to act on. Most commands have a default set of threads and pro-
cesses and, in most cases, you won’t want to change the default. In the GUI,
the default is the process and thread in the current Process Window. In the
CLI, this default is indicated by the focus, which is shown in the CLI prompt.

There are times, however, when you need to change this default. This sec-
tion begins a rather intensive look at how you tell TotalView what processes
and threads to use as the target of a command.

Topics in this section are:

“Understanding Process/Thread Sets” on page 259
“Specifying Arenas” on page 261
“Specifying Processes and Threads” on page 261

Understanding
Process/Thread
Sets

All TotalView commands operate on a set of processes and threads. This set
is called a Process/Thread (P/T) set. The right-hand text box in windows that
contain P/T set controls lets you construct these sets. In the CLI, you specify
a P/T set as an argument to a command such as dfocus. If you’re using the
GUI, TotalView creates this list for you based on which Process Window has
focus.

Unlike a serial debugger in which each command clearly applies to the only
executing thread, TotalView can control and monitor many threads with
their PCs at many different locations. The P/T set indicates the groups, pro-
cesses, and threads that are the target of the CLI command. No limitation
exists on the number of groups, processes, and threads in a set.

Setting Process and Thread Focus

260 Chapter 13: Using Groups, Processes, and Threads

A P/T set is a list that contains one or more P/T identifiers. (The next sec-
tion, “Specifying Arenas” on page 261, explains what a P/T identifier is.) Tcl
lets you create lists in the following ways:

You can enter these identifiers within braces ({ }).
You can use Tcl commands that create and manipulate lists.

These lists are then used as arguments to a command. If you’re entering
one element, you usually do not have to use the Tcl list syntax.

For example, the following list contains specifiers for process 2, thread 1,
and process 3, thread 2:

{p2.1 p3.2}

If you do not explicitly specify a P/T set in the CLI, TotalView defines a tar-
get set for you. (In the GUI, the default set is determined by the current
Process Window.) This set is displayed as the default CLI prompt. (For infor-
mation on this prompt, see “About the CLI Prompt” on page 209.)

You can change the focus on which a command acts by using the dfocus
command. If the CLI executes the dfocus command as a unique command,
it changes the default P/T set. For example, if the default focus is process 1,
the following command changes the default focus to process 2:

dfocus p2

After TotalView executes this command, all commands that follow focus on
process 2.

In the GUI, you set the focus by displaying a Process Window that contains this process.
Do this by using the P+ and P– buttons in the tab bar at the bottom, by making a selec-
tion in the Processes/Ranks Tab, or by clicking on a process in the Root Window.

If you begin a command with dfocus, TotalView changes the target only for
the command that follows. After the command executes, TotalView
restores the former default. The following example shows both of these
ways to use the dfocus command. Assume that the current focus is process
1, thread 1. The following commands change the default focus to group 2
and then step the threads in this group twice:

dfocus g2
dstep
dstep

In contrast, if the current focus is process 1, thread 1, the following com-
mands step group 2 and then step process 1, thread 1:

dfocus g2 dstep
dstep

Some commands only operate at the process level; that is, you cannot
apply them to a single thread (or group of threads) in the process, but must
apply them to all or to none.

Setting Process and Thread Focus

TotalView Users Guide: version 8.8 261

Specifying Arenas

A P/T identifier often indicates a number of groups, processes, and threads.
For example, assume that two threads executing in process 2 are stopped
at the same statement. This means that TotalView places the two stopped
threads into lockstep groups. If the default focus is process 2, stepping this
process actually steps both of these threads.

TotalView uses the term arena to define the processes and threads that are
the target of an action. In this case, the arena has two threads. Many CLI
commands can act on one or more arenas. For example, the following
command has two arenas:

dfocus {p1 p2}

The two arenas are process 1 and process 2.

When there is an arena list, each arena in the list has its own GOI, POI, and
TOI.

Specifying Processes and Threads

The previous sections described P/T sets as being lists; however, these dis-
cussions ignored what the individual elements of the list are. A better defi-
nition is that a P/T set is a list of arenas, where an arena consists of the pro-
cesses, threads, and groups that are affected by a debugging command.
Each arena specifier describes a single arena in which a command acts; the
list is just a collection of arenas. Most commands iterate over the list, act-
ing individually on an arena. Some CLI output commands, however, com-
bine arenas and act on them as a single target.

An arena specifier includes a width and a TOI. (Widths are discussed later in
this section.) In the P/T set, the TOI specifies a target thread, while the width
specifies how many threads surrounding the thread of interest are affected.

Defining the Thread of Interest (TOI)
The TOI is specified as p.t, where p is the TotalView process ID (PID) and t is
the TotalView thread ID (TID). The p.t combination identifies the POI (Pro-
cess of Interest) and TOI. The TOI is the primary thread affected by a com-
mand. This means that it is the primary focus for a TotalView command. For
example, while the dstep command always steps the TOI, it can run the rest
of the threads in the POI and step other processes in the group.

In addition to using numerical values, you can also use two special symbols:

The less-than character (<) indicates the lowest numbered worker thread in a
process, and is used instead of the TID value. If, however, the arena ex-
plicitly names a thread group, the < symbol means the lowest numbered
member of the thread group. This symbol lets TotalView select the first
user thread, which might not be thread 1; for example, the first and only
user thread might be thread number 3 on HP Alpha systems.
A dot (.) indicates the current set. Although you seldom use this symbol
interactively, it can be useful in scripts.

Setting Process and Thread Focus

262 Chapter 13: Using Groups, Processes, and Threads

About Process and Thread Widths
You can enter a P/T set in two ways. If you’re not manipulating groups, the
format is as follows:

[width_letter][pid][.tid]

“Specifying Groups in P/T Sets” on page 265 extends this format to include groups.
When using P/T sets, you can create sets with just width indicators or just group indica-
tors, or both.

For example, p2.3 indicates process 2, thread 3.

Although the syntax seems to indicate that you do not need to enter any
element, TotalView requires that you enter at least one. Because TotalView
tries to determine what it can do based on what you type, it tries to fill in
what you omit. The only requirement is that when you use more than one
element, you use them in the order shown here.

You can leave out parts of the P/T set if what you do enter is unambiguous.
A missing width or PID is filled in from the current focus. A missing TID is
always assumed to be <. For more information, see “Naming Incomplete Are-
nas” on page 274.

The width_letter indicates which processes and threads are part of the arena.
You can use the following letters:

t Thread width

A command’s target is the indicated thread.

p Process width

A command’s target is the process that contains the TOI.

g Group width

A command’s target is the group that contains the POI. This in-
dicates control and share groups.

a All processes

A command’s target is all threads in the GOI that are in the
POI.

d Default width

A command’s target depends on the default for each com-
mand. This is also the width to which the default focus is set.
For example, the dstep command defaults to process width
(run the process while stepping one thread), and the dwhere
command defaults to thread width.

You must use lowercase letters to enter these widths.

Figure 166 on page 263 illustrates how these specifiers relate to one another.

The g specifier indicates control and share groups. This inverted triangle
indicates that the arena focuses on a greater number of entities as you
move from Thread level at the bottom to All level at the top.

As mentioned previously, the TOI specifies a target thread, while the width
specifies how many threads surrounding the TOI are also affected. For

Setting Process and Thread Focus

TotalView Users Guide: version 8.8 263

example, the dstep command always requires a TOI, but entering this com-
mand can do the following:

Step just the TOI during the step operation (thread-level single-step).
Step the TOI and step all threads in the process that contain the TOI
(process-level single-step).
Step all processes in the group that have threads at the same PC as the
TOI (group-level single-step).

This list doesn’t indicate what happens to other threads in your program
when TotalView steps your thread. For more information, see “Stepping (Part
II): Examples” on page 275.

To save a P/T set definition for later use, assign the specifiers to a Tcl vari-
able; for example:

set myset {g2.3 t3.1}
dfocus $myset dgo

As the dfocus command returns its focus set, you can save this value for
later use; for example:

set save_set [dfocus]

Specifier Examples The following are some sample specifiers:

g2.3 Select process 2, thread 3, and set the width to group.

t1.7 Commands act only on thread 7 or process 1.

d1.< Use the default set for each command, focusing on the first
user thread in process 1. The less-than symbol (<) sets the TID
to the first user thread.

Figure 166: Width Specifiers
All

Control Group

Share Group

Process

Thread

a

g

p

g

t

Setting Group Focus

264 Chapter 13: Using Groups, Processes, and Threads

Setting Group Focus

TotalView has two types of groups: process groups and thread groups. Pro-
cess groups only contain processes, and thread groups only contain
threads. The threads in a thread group can be drawn from more than one
process.

Topics in this section are:

“Specifying Groups in P/T Sets” on page 265
“About Arena Specifier Combinations” on page 266
“‘All’ Does Not Always Mean ‘All’” on page 269
“Setting Groups” on page 270
“Using the g Specifier: An Extended Example” on page 271
“Merging Focuses” on page 273
“Naming Incomplete Arenas” on page 274
“Naming Lists with Inconsistent Widths” on page 275

TotalView has four predefined groups. Two of these only contain processes,
while the other two only contain threads. TotalView also lets you create
your own groups, and these groups can have elements that are processes
and threads. The following are the predefined process groups:

Control Group
Contains the parent process and all related processes. A control group
includes children that were forked (processes that share the same source
code as the parent) and children that were forked but subsequently called
the execve() function.
Assigning a new value to the CGROUP (dpid) variable for a process
changes that process’s control group. In addition, the dgroups –add com-
mand lets you add members to a group in the CLI. In the GUI, you use the
Group > Custom Groups command.
Share Group
Contains all members of a control group that share the same executable.
TotalView automatically places processes in share groups based on their
control group and their executable.

You can’t change a share group’s members. However, the dynamically loaded libraries
used by group members can be different.

The following are the predefined thread groups:

Workers Group
Contains all worker threads from all processes in the control group. The
only threads not contained in a worker’s group are your operating sys-
tem’s manager threads.

Setting Group Focus

TotalView Users Guide: version 8.8 265

Lockstep Group
Contains every stopped thread in a share group that has the same PC.
TotalView creates one lockstep group for every thread. For example, sup-
pose two threads are stopped at the same PC. TotalView creates two lock-
step groups. While each lockstep group has the same two members, they
differ in that each has a different TOI. While there are some circumstances
where this is important, you can usually ignore this distinction. That is,
while two lockstep groups exist if two threads are stopped at the same
PC, ignoring the second lockstep group is almost never harmful.
The group ID value for a lockstep group differs from the ID of other
groups. Instead of having an automatically and transient integer ID, the
lockstep group ID is pid.tid, where pid.tid identifies the thread with which
it is associated. For example, the lockstep group for thread 2 in process
1 is 1.2.

In general, if you’re debugging a multi-process program, the control group
and share group differ only when the program has children that it forked
with by calling the execve() function.

Specifying Groups in P/T Sets

This section extends the arena specifier syntax to include groups.

If you do not include a group specifier, the default is the control group. For
example, the CLI only displays a target group in the focus string if you set it
to something other than the default value.

You most often use target group specifiers with the stepping commands, as they give
these commands more control over what’s being stepped.

Use the following format to add groups to an arena specifier:

[width_letter][group_indicator][pid][.tid]

This format adds the group_indicator to what was discussed in “Specifying Pro-
cesses and Threads” on page 261.

In the description of this syntax, everything appears to be optional. But,
while no single element is required, you must enter at least one element.
TotalView determines other values based on the current focus.

TotalView lets you identify a group by using a letter, number, or name.

A Group Letter You can name one of TotalView’s predefined sets. Each set is identified by a
letter. For example, the following command sets the focus to the workers
group:

dfocus W

Setting Group Focus

266 Chapter 13: Using Groups, Processes, and Threads

The following are the group letters. These letters are in uppercase:

C Control group

All processes in the control group.

D Default control group

All processes in the control group. The only difference be-
tween this specifier and the C specifier is that this letter
tells the CLI not to display a group letter in the CLI prompt.

S Share group

The set of processes in the control group that have the
same executable as the arena’s TOI.

W Workers group

The set of all worker threads in the control group.

L Lockstep group

A set that contains all threads in the share group that have
the same PC as the arena’s TOI. If you step these threads
as a group, they proceed in lockstep.

A Group Number You can identify a group by the number TotalView assigns to it. The follow-
ing example sets the focus to group 3:

dfocus 3/

The trailing slash tells TotalView that you are specifying a group number
instead of a PID. The slash character is optional if you’re using a group_letter.
However, you must use it as a separator when entering a numeric group ID
and a pid.tid pair. For example, the following example identifies process 2 in
group 3:

p3/2

A Group Name You can name a set that you define. You enter this name with slashes. The
following example sets the focus to the set of threads contained in process
3 that are also contained in a group called my_group:

dfocus p/my_group/3

About Arena Specifier Combinations

The following table lists what’s selected when you use arena and group
specifiers to step your program:

Specifier Specifies

aC All threads.
aS All threads.
aW All threads in all workers groups.
aL All threads.

Every thread is a member of a control group and a member of a
share group and a member of a lockstep group. Consequently, three
of these definitions mean “all threads.”

Setting Group Focus

TotalView Users Guide: version 8.8 267

Stepping commands behave differently if the group being stepped is a process group
rather than a thread group. For example, aC and aS perform the same action, but aL is
different.

If you don’t add a PID or TID to your arena specifier, TotalView does it for
you, taking the PID and TID from the current or default focus.

The following are some additional examples. These examples add PIDs and
TIDs numbers to the raw specifier combinations listed in the previous table:

pW3 All worker threads in process 3.

pW3.< All worker threads in process 3. The focus of this speci-
fier is the same as the focus in the previous example.

gW3 All worker threads in the control group that contains
process 3. The difference between this and pW3 is that
pW3 restricts the focus to one of the processes in the
control group.

gL3.2 All threads in the same share group as process 3 that
are executing at the same PC as thread 2 in process 3.
The reason this is a share group and not a control
group is that different share groups can reside only in
one control group.

/3 Specifies processes and threads in process 3. The
arena width, POI, and TOI are inherited from the exist-
ing P/T set, so the exact meaning of this specifier de-
pends on the previous context.

While the slash is unnecessary because no group is in-
dicated, it is syntactically correct.

g3.2/3 The 3.2 group ID is the name of the lockstep group for
thread 3.2. This group includes all threads in the pro-
cess 3 share group that are executing at the same PC as
thread 2.

gC All threads in the Thread of Interest (TOI) control group.
gS All threads in the TOI share group.
gW All worker threads in the control group that contains the TOI.
gL All threads in the same share group within the process that

contains the TOI that have the same PC as the TOI.

pC All threads in the control group of the Process of Interest (POI). This
is the same as gC.

pS All threads in the process that participate in the same share group
as the TOI.

pW All worker threads in the POI.
pL All threads in the POI whose PC is the same as the TOI.

tC Just the TOI. The t specifier overrides the group specifier. So, for
example, tW and t both name the current thread.tS

tW
tL

Specifier Specifies

Setting Group Focus

268 Chapter 13: Using Groups, Processes, and Threads

p3/3 Sets the process to process 3. The Group of Interest
(GOI) is set to group 3. If group 3 is a process group,
most commands ignore the group setting. If group 3 is
a thread group, most commands act on all threads in
process 3 that are also in group 3.

When you set the process using an explicit group, you
might not be including all the threads you expect to be
included. This is because commands must look at the
TOI, POI, and GOI.

It is redundant to specify a thread width with an explicit group ID as this width means
that the focus is on one thread.

In the following examples, the first argument to the dfocus command
defines a temporary P/T set that the CLI command (the last term) operates
on. The dstatus command lists information about processes and threads.
These examples assume that the global focus was d1.< initially.

dfocus g dstatus
Displays the status of all threads in the control group.

dfocus gW dstatus
Displays the status of all worker threads in the control
group.

dfocus p dstatus
Displays the status of all worker threads in the current
focus process. The width here, as in the previous exam-
ple, is process, and the (default) group is the control
group. The intersection of this width and the default
group creates a focus that is the same as in the previ-
ous example.

dfocus pW dstatus
Displays the status of all worker threads in the current
focus process. The width is process level, and the tar-
get is the workers group.

The following example shows how the prompt changes as you change the
focus. In particular, notice how the prompt changes when you use the C
and the D group specifiers.

d1.<> f C
dC1.<
dC1.<> f D
d1.<
d1.<>

Two of these lines end with the less-than symbol (<). These lines aren’t
prompts. Instead, they are the value returned by TotalView when it exe-
cutes the dfocus command.

Setting Group Focus

TotalView Users Guide: version 8.8 269

‘All’ Does Not Always Mean ‘All’

When you use stepping commands, TotalView determines the scope of
what runs and what stops by looking at the TOI. This section looks at the
differences in behavior when you use the a (all) arena specifier. The follow-
ing table describes what runs when you use this arena:

The following are some combinations:

f aC dgo Runs everything. If you’re using the dgo command, ev-
erything after the a is ignored: a/aPizza/17.2, ac, aS, and
aL do the same thing. TotalView runs everything.

f aC duntil While everything runs, TotalView must wait until some-
thing reaches a goal. It really isn’t obvious what this fo-
cus is. Since C is a process group, you might guess that
all processes run until at least one thread in every par-
ticipating process arrives at a goal. The reality is that
since this goal must reside in the current share group,
this command completes as soon as all processes in
the TOI share group have at least one thread at the
goal. Processes in other control groups run freely until
this happens.

The TOI determines the goal. If there are other control
groups, they do not participate in the goal.

f aS duntil This command does the same thing as the f aC duntil
command because the goals for f aC duntil and f aS
duntil are the same, and the processes that are in this
scope are identical.

Although more than one share group can exist in a
control group, these other share groups do not partici-
pate in the goal.

f aL duntil Although everything will run, it is not clear what should
occur. L is a thread group, so you might expect that the
duntil command will wait until all threads in all lockstep
groups arrive at the goal. Instead, TotalView defines the
set of threads that it allows to run to a goal as just
those threads in the TOI’s lockstep group. Although
there are other lockstep groups, these lockstep groups
do not participate in the goal. So, while the TOI’s lock-
step threads are progressing towards their goal, all
threads that were previously stopped run freely.

Specifier Specifies

aC All threads.
aS All threads.
aW All threads in all workers groups.
aL All threads.

Every thread is a member of a control group and a member of a
share group and a member of a lockstep group. Consequently,
three of these definitions mean “all threads.”

Setting Group Focus

270 Chapter 13: Using Groups, Processes, and Threads

f aW duntil Everything runs. TotalView waits until all members of
the TOI workers group arrive at the goal.

Two broad distinctions between process and thread group behavior exist:

When the focus is on a process group, TotalView waits until just one
thread from each participating process arrives at the goal. The other
threads just run.
When focus is on a thread group, every participating thread must arrive at
the goal.
When the focus is on a process group, TotalView steps a thread over the
goal breakpoint and continues the process if it isn’t the right thread.
When the focus is on a thread group, TotalView holds a thread even if it
isn’t the right thread. It also continues the rest of the process.
If your system doesn’t support asynchronous thread control, TotalView
treats thread specifiers as if they were process specifiers.

With this in mind, f aL dstep does not step all threads. Instead, it steps only
the threads in the TOI’s lockstep group. All other threads run freely until
the stepping process for these lockstep threads completes.

Setting Groups

This section presents a series of examples that set and create groups.

You can use the following methods to indicate that thread 3 in process 2 is
a worker thread:

dset WGROUP(2.3) $WGROUP(2)
Assigns the group ID of the thread group of worker
threads associated with process 2 to the WGROUP vari-
able. (Assigning a nonzero value to WGROUP indicates
that this is a worker group.)

dset WGROUP(2.3) 1
This is a simpler way of doing the same thing as the
previous example.

dfocus 2.3 dworker 1
Adds the groups in the indicated focus to a workers
group.

dset CGROUP(2) $CGROUP(1)
dgroups –add –g $CGROUP(1) 2
dfocus 1 dgroups –add 2

These three commands insert process 2 into the same
control group as process 1.

dgroups –add –g $WGROUP(2) 2.3
Adds process 2, thread 3 to the workers group associ-
ated with process 2.

dfocus tW2.3 dgroups –add
This is a simpler way of doing the same thing as the
previous example.

Setting Group Focus

TotalView Users Guide: version 8.8 271

The following are some additional examples:

dfocus g1 dgroups –add –new thread
Creates a new thread group that contains all the
threads in all the processes in the control group asso-
ciated with process 1.

set mygroup [dgroups –add –new thread
$GROUP($SGROUP(2))]
dgroups –remove –g $mygroup 2.3
dfocus g$mygroup/2 dgo

These three commands define a new group that con-
tains all the threads in the process 2 share group ex-
cept for thread 2.3, and then continue that set of
threads. The first command creates a new group that
contains all the threads from the share group; the sec-
ond removes thread 2.3; and the third runs the remain-
ing threads.

Using the g Specifier: An Extended Example

The meaning of the g width specifier is sometimes not clear when it is cou-
pled with a group scope specifier. Why have a g specifier when you have
four other group specifiers? Stated in another way, isn’t something like gL
redundant?

The simplest answer, and the reason you most often use the g specifier, is
that it forces the group when the default focus indicates something differ-
ent from what you want it to be.

The following example shows this. The first step sets a breakpoint in a multi-
threaded OMP program and executes the program until it hits the break-
point.

d1.<> dbreak 35
Loaded OpenMP support library libguidedb_3_8.so :

KAP/Pro Toolset 3.8
1
d1.<> dcont
Thread 1.1 has appeared
Created process 1/37258, named "omp_prog"
Thread 1.1 has exited
Thread 1.1 has appeared
Thread 1.2 has appeared
Thread 1.3 has appeared
Thread 1.1 hit breakpoint 1 at line 35 in
".breakpoint_here"

The default focus is d1.<, which means that the CLI is at its default width,
the POI is 1, and the TOI is the lowest numbered nonmanager thread.
Because the default width for the dstatus command is process, the CLI dis-
plays the status of all processes. Typing dfocus p dstatus produces the
same output.

Setting Group Focus

272 Chapter 13: Using Groups, Processes, and Threads

d1.<> dstatus
1: 37258 Breakpoint [omp_prog]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

1.2: 37258.2 Stopped PC=0xffffffffffffffff
1.3: 37258.3 Stopped PC=0xd042c944

d1.<> dfocus p dstatus
1: 37258 Breakpoint [omp_prog]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

1.2: 37258.2 Stopped PC=0xffffffffffffffff
1.3: 37258.3 Stopped PC=0xd042c944

The CLI displays the following when you ask for the status of the lockstep
group. (The rest of this example uses the f abbreviation for dfocus, and st
for dstatus.)

d1.<> f L st
1: 37258 Breakpoint [omp_prog]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

This command tells the CLI to display the status of the threads in thread,
which is the 1.1 lockstep group since this thread is the TOI. The f L focus
command narrows the set so that the display only includes the threads in
the process that are at the same PC as the TOI.

By default, the dstatus command displays information at process width. This means
that you don’t need to type f pL dstatus.

The duntil command runs thread 1.3 to the same line as thread 1.1. The
dstatus command then displays the status of all the threads in the process:

d1.<> f t1.3 duntil 35
35@> write(*,*)"i= ",i,

"thread= ",omp_get_thread_num()
d1.<> f p dstatus
1: 37258 Breakpoint [omp_prog]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

1.2: 37258.2 Stopped PC=0xffffffffffffffff
1.3: 37258.3 Breakpoint PC=0x1000acd0,

[./omp_prog.f#35]

As expected, the CLI adds a thread to the lockstep group:

d1.<> f L dstatus
1: 37258 Breakpoint [omp_prog]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

The next set of commands begins by narrowing the width of the default
focus to thread width—notice that the prompt changes—and then dis-
plays the contents of the lockstep group:

Setting Group Focus

TotalView Users Guide: version 8.8 273

d1.<> f t
t1.<> f L dstatus
1: 37258 Breakpoint [omp_prog]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

Although the lockstep group of the TOI has two threads, the current focus
has only one thread, and that thread is, of course, part of the lockstep
group. Consequently, the lockstep group in the current focus is just the one
thread, even though this thread’s lockstep group has two threads.

If you ask for a wider width (p or g) with L, the CLI displays more threads
from the lockstep group of thread 1.1. as follows:

t1.<> f pL dstatus
1: 37258 Breakpoint [omp_prog]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

t1.<> f gL dstatus
1: 37258 Breakpoint [omp_prog]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

If the TOI is 1.1, L refers to group number 1.1, which is the lockstep group of thread
1.1.

Because this example only contains one process, the pL and gL specifiers
produce the same result when used with the dstatus command. If, however,
there were additional processes in the group, you only see them when you
use the gL specifier.

Merging Focuses

When you specify more than one focus for a command, the CLI merges
them together. In the following example, the focus indicated by the
prompt—this focus is called the outer focus—controls the display. This
example shows what happens when dfocus commands are strung together:

t1.<> f d
d1.<
d1.<> f tL dstatus
1: 37258 Breakpoint [omp_prog]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

d1.<> f tL f p dstatus
1: 37258 Breakpoint [omp_prog]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

Setting Group Focus

274 Chapter 13: Using Groups, Processes, and Threads

d1.<> f tL f p f D dstatus
1: 37258 Breakpoint [omp_prog]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

1.2: 37258.2 Stopped PC=0xffffffffffffffff
1.3: 37258.3 Breakpoint PC=0x1000acd0,

[./omp_prog.f#35]
d1.<> f tL f p f D f L dstatus
1: 37258 Breakpoint [omp_prog]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./omp_prog.f#35]

Stringing multiple focuses together might not produce the most readable
result. In this case, it shows how one dfocus command can modify what
another sees and acts on. The ultimate result is an arena that a command
acts on. In these examples, the dfocus command tells the dstatus com-
mand what to display.

Naming Incomplete Arenas

In general, you do not need to completely specify an arena. TotalView pro-
vides values for any missing elements. TotalView either uses built-in default
values or obtains them from the current focus. The following explains how
TotalView fills in missing pieces:

If you don’t use a width, TotalView uses the width from the current focus.
If you don’t use a PID, TotalView uses the PID from the current focus.
If you set the focus to a list, there is no longer a default arena. This
means that you must explicitly name a width and a PID. You can, how-
ever, omit the TID. (If you omit the TID, TotalView defaults to the less-
than symbol <.)
You can type a PID without typing a TID. If you omit the TID, TotalView
uses the default <, where < indicates the lowest numbered worker thread
in the process. If, however, the arena explicitly names a thread group, <
means the lowest numbered member of the thread group.
TotalView doesn’t use the TID from the current focus, since the TID is a
process-relative value.
A dot before or after the number specifies a process or a thread. For ex-
ample, 1. is clearly a PID, while .7 is clearly a TID.
If you type a number without typing a dot, the CLI most often interprets
the number as being a PID.
If the width is t, you can omit the dot. For instance, t7 refers to thread 7.
If you enter a width and don’t specify a PID or TID, TotalView uses the
PID and TID from the current focus.
If you use a letter as a group specifier, TotalView obtains the rest of the
arena specifier from the default focus.
You can use a group ID or tag followed by a /. TotalView obtains the rest
of the arena from the default focus.

Stepping (Part II): Examples

TotalView Users Guide: version 8.8 275

Focus merging can also influence how TotalView fills in missing specifiers.
For more information, see “Merging Focuses” on page 273.

Naming Lists with Inconsistent Widths

TotalView lets you create lists that contain more than one width specifier.
This can be very useful, but it can be confusing. Consider the following:

{p2 t7 g3.4}

This list is quite explicit: all of process 2, thread 7, and all processes in the
same group as process 3, thread 4. However, how should TotalView use this
set of processes, groups, and threads?

In most cases, TotalView does what you would expect it to do: it iterates
over the list and acts on each arena. If TotalView cannot interpret an incon-
sistent focus, it prints an error message.

Some commands work differently. Some use each arena’s width to deter-
mine the number of threads on which it acts. This is exactly what the dgo
command does. In contrast, the dwhere command creates a call graph for
process-level arenas, and the dstep command runs all threads in the arena
while stepping the TOI. TotalView may wait for threads in multiple pro-
cesses for group-level arenas. The command description in the TotalView
Reference Guide points out anything that you need to watch out for.

Stepping (Part II): Examples

The following are examples that use the CLI stepping commands:

Step a single thread
While the thread runs, no other threads run (except kernel manager threads).
Example: dfocus t dstep
Step a single thread while the process runs
A single thread runs into or through a critical region.
Example: dfocus p dstep
Step one thread in each process in the group
While one thread in each process in the share group runs to a goal, the
rest of the threads run freely.
Example: dfocus g dstep
Step all worker threads in the process while nonworker threads run
Worker threads run through a parallel region in lockstep.
Example: dfocus pW dstep
Step all workers in the share group
All processes in the share group participate. The nonworker threads run.
Example: dfocus gW dstep

Stepping (Part II): Examples

276 Chapter 13: Using Groups, Processes, and Threads

Step all threads that are at the same PC as the TOI
TotalView selects threads from one process or the entire share group. This
differs from the previous two items in that TotalView uses the set of
threads that are in lockstep with the TOI rather than using the workers
group.
Example: dfocus L dstep

In the following examples, the default focus is set to d1.<.

dstep Steps the TOI while running all other threads in the
process.

dfocus W dnext Runs the TOI and all other worker threads in the pro-
cess to the next statement. Other threads in the pro-
cess run freely.

dfocus W duntil 37
Runs all worker threads in the process to line 37.

dfocus L dnext Runs the TOI and all other stopped threads at the same
PC to the next statement. Other threads in the process
run freely. Threads that encounter a temporary break-
point in the course of running to the next statement
usually join the lockstep group.

dfocus gW duntil 37
Runs all worker threads in the share group to line 37.
Other threads in the control group run freely.

UNW 37 Performs the same action as the previous command:
runs all worker threads in the share group to line 37.
This example uses the predefined UNW alias instead of
the individual commands. That is, UNW is an alias for
dfocus gW duntil.

SL Finds all threads in the share group that are at the
same PC as the TOI and steps them all in one state-
ment. This command is the built-in alias for dfocus gL
dstep.

sl Finds all threads in the current process that are at the
same PC as the TOI, and steps them all in one state-
ment. This command is the built-in alias for dfocus L
dstep.

Using P/T Set Operators

TotalView Users Guide: version 8.8 277

Using P/T Set Operators

At times, you do not want all of one type of group or process to be in the
focus set. TotalView lets you use the following three operators to manage
your P/T sets:

| Creates a union; that is, all members of two sets.

- Creates a difference; that is, all members of the first set
that are not also members of the second set.

& Creates an intersection; that is, all members of the first
set that are also members of the second set.

For example, the following creates a union of two P/T sets:

p3 | L2

You can, apply these operations repeatedly; for example:

p2 | p3 & L2

This statement creates an intersection between p3 and L2, and then cre-
ates a union between p2 and the results of the intersection operation. You
can directly specify the order by using parentheses; for example:

p2 | (p3 & pL2)

Typically, these three operators are used with the following P/T set functions:

breakpoint(ptset) Returns a list of all threads that are stopped at a break-
point.

comm(process, “comm_name”)
Returns a list containing the first thread in each pro-
cess associated within a communicator within the
named process. While process is a P/T set it is not ex-
panded into a list of threads.

error(ptset) Returns a list of all threads stopped due to an error.

existent(ptset) Returns a list of all threads.

held(ptset) Returns a list of all threads that are held.

nonexistent(ptset)
Returns a list of all processes that have exited or which,
while loaded, have not yet been created.

running(ptset) Returns a list of all running threads.

stopped(ptset) Returns a list of all stopped threads.

unheld(ptset) Returns a list of all threads that are not held.

watchpoint(ptset)
Returns a list of all threads that are stopped at a watch-
point.

Creating Custom Groups

278 Chapter 13: Using Groups, Processes, and Threads

The way in which you specify the P/T set argument is the same as the way
that you specify a P/T set for the dfocus command. For example,
watchpoint(L) returns all threads in the current lockstep group. The only
operator that differs is comm, whose argument is a process.

The dot operator (.), which indicates the current set, can be helpful when
you are editing an existing set.

The following examples clarify how you use these operators and functions.
The P/T set a (all) is the argument to these operators.

f {breakpoint(a) | watchpoint(a)} dstatus
Shows information about all threads that stopped at
breakpoints and watchpoints. The a argument is the
standard P/T set indicator for all.

f {stopped(a) - breakpoint(a)} dstatus
Shows information about all stopped threads that are
not stopped at breakpoints.

f {. | breakpoint(a)} dstatus
Shows information about all threads in the current set,
as well as all threads stopped at a breakpoint.

f {g.3 - p6} duntil 577
Runs thread 3 along with all other processes in the
group to line 577. However, it does not run anything in
process 6.

f {($PTSET) & p123}
Uses just process 123 in the current P/T set.

Creating Custom Groups

Debugging a multi-process or multi-threaded program most often focuses
on running the program in one of two ways: either you run everything or
run one or two things. Figuring out what you should be running, however, is
a substantial part of the art of debugging. You can make things easier on
yourself if you divide your program into groups, and then control these
groups separately. When you need to do this, use the Groups > Custom
Groups Dialog Box. (See Figure 167 on page 279.) This dialog box also lets
you alter a group’s contents as well as delete the group.

You can only manage process groups with this dialog box. Thread groups can only be
managed using the CLI. In addition, the groups you create must reside within one con-
trol group.

When you first display this dialog box, TotalView also displays a second dia-
log box. Use this dialog box to enter the group’s name.

Creating Custom Groups

TotalView Users Guide: version 8.8 279

The right side of this dialog box contains a box. Each represents one of
your processes. The initial color represents the process’s state. (This just
helps you coordinate within the display in the Process Window’s Processes/
Ranks Tab.) You can now create a group using your mouse by clicking on
blocks as follows:

Left-click on a box: Selects a box. No other box is selected. If other
boxes are selected, they will no longer be selected.
Shift-left-click and drag: select a group of contiguous boxes.
Control-left-click on a box: Adds a box to the current selection.

Edit an existing group in the same way. After making the group active by
clicking on its name on the left, click within the right to make changes. (In
most cases, you’ll be using a control-left-click.)

If you’ve changed a group and then select Add or Close, TotalView asks if
you want to save the changed group.

If you click Add when a group is selected, TotalView creates a group with
the same members as that group.

Finally, you can delete a group by selecting its name on the left, then press
the Remove button.

Figure 167: Group > Custom
Groups Dialog Box

Creating Custom Groups

280 Chapter 13: Using Groups, Processes, and Threads

TotalView Users Guide: version 8.8 281

c
h
a
p
t
e
r

Examining and
Changing Data

14

This chapter explains how to examine and change data as you
debug your program.

This chapter contains the following sections:

“Changing How Data is Displayed” on page 281
“Displaying Variables” on page 285
“Diving in Variable Windows” on page 300
“Viewing a List of Variables” on page 305
“Changing the Values of Variables” on page 312
“Changing a Variable’s Data Type” on page 313
“Changing the Address of Variables” on page 323
“Displaying C++ Types” on page 324
“Displaying Fortran Types” on page 326
“Displaying Thread Objects” on page 331
“Scoping and Symbol Names” on page 332

This chapter does not discuss array data. For that information, see Chapter
15, “Examining Arrays,” on page 335.

Changing How Data is Displayed

When a debugger displays a variable, it relies on the definitions of the data
used by your compiler. The following two sections show how you can
change the way TotalView displays this information:

“Displaying STL Variables” on page 282
“Changing Size and Precision” on page 284

Changing How Data is Displayed

282 Chapter 14: Examining and Changing Data

Displaying STL Variables

The C++ STL (Standard Template Library) greatly simplifies the way in which
you can access data. Since it offers standard and prepackaged ways to orga-
nize data, you do not have to be concerned with the mechanics of the
access method. The disadvantage to using the STL while debugging is that
the information debuggers display is organized according to the compiler’s
view of the data, rather than the STL’s logical view. For example, here is how
your compiler sees a map compiled using the GNU C++ compiler (gcc):

Most of the information is generated by the STL template and, in most
cases, is not interesting. In addition, the STL does not aggregate the infor-
mation in a useful way.

STLView solves these problems by rearranging (that is, transforming) the data
so that you can easily examine it. For example, here is the transformed map.

Using native and GCC compilers on IBM AIX, IRIX/MIPS, HP Tru64 Alpha,
and Sun Solaris, TotalView can transform STL strings, vectors, lists, and

Figure 168: An
Untransformed Map

Figure 169: A Transformed
Map

Changing How Data is Displayed

TotalView Users Guide: version 8.8 283

maps. TotalView can also transform these STL types if you are using GCC
and the Intel Version 7 and 8 C++ 32-bit compiler running on the Red Hat
x86 platform. The TotalView Platforms and System Requirements Guide names the
compilers for which TotalView transforms STL data types.

The following figure shows an untransformed and transformed list and vector.

You can create transformations for other STL containers. See the “TotalView Reference
Guide” for more information.

By default, TotalView transforms STL types. If you need to look at the
untransformed data structures, clear the View simplified STL containers
(and user-defined transformations) checkbox on the Options Page of the
File > Preference Dialog Box.

Figure 170: List and Vector
Transformations

CLI: dset TV::ttf { true | false }

Changing How Data is Displayed

284 Chapter 14: Examining and Changing Data

Following pointers in an STL data structure to retrieve values can be time-
consuming. By default, TotalView only follows 500 pointers. You can change
this by altering the value of the TV::ttf_ max_length variable.

Changing Size and Precision

If the defaults formats that TotalView uses to display a variable’s value
doesn’t meet your needs, you can use the Formatting Page of the File >
Preferences Dialog Box to indicate how precise you want the simple data
types to be.

After selecting one of the data types listed on the left side of the Format-
ting Page, you can set how many character positions a value uses when
TotalView displays it (Min Width) and how many numbers to display to the
right of the decimal place (Precision). You can also tell TotalView how to
align the value in the Min Width area, and if it should pad numbers with
zeros or spaces.

Although the way in which these controls relate and interrelate may appear
to be complex, the Preview area shows you the result of a change. Play with
the controls for a minute or so to see what each control does. You may
need to set the Min Width value to a larger number than you need it to be
to see the results of a change. For example, if the Min Width value doesn’t
allow a number to be justified, it could appear that nothing is happening.

Figure 171: File > Preferences
Formatting Page

CLI: You can set these properties from within the CLI. To obtain a list of
variables that you can set, type “dset TV::data_format*”.

Displaying Variables

TotalView Users Guide: version 8.8 285

Displaying Variables

The Process Window Stack Frame Pane displays variables that are local to
the current stack frame. This pane doesn’t show the data for nonsimple
variables, such as pointers, arrays, and structures. To see this information,
you need to dive on the variable. This tells TotalView to display a Variable
Window that contains the variable’s data. For example, diving on an array
variable tells TotalView to display the entire contents of the array.

Dive on a variable by clicking your middle mouse button on it. If your mouse doesn’t
have three buttons, you can single- or double-click on an item.

If you place your mouse cursor over a variable or an expression, TotalView
displays its value in a tooltip window.

If TotalView cannot evaluate what you place your mouse over, it will display
some information. For example, if you place the mouse over a structure,
the tooltip tells you the kind of structure. In all cases, what you see is simi-
lar to what you’d see if you placed the same information within the
Expression List Window.

If you dive on simple variables or registers, TotalView still brings up a Vari-
able Window; however, you will see some additional information about the
variable or register.

Figure 172: A Tooltip

Displaying Variables

286 Chapter 14: Examining and Changing Data

Although a Variable Window is the best way to see all of an array’s elements
or all elements in a structure, using the Expression List Window is easier for
variables with one value. Using it also cuts down on the number of windows
that are open at any one time. For more information, see “Viewing a List of
Variables” on page 305.

The following sections discuss how you can display variable information:

“Displaying Program Variables” on page 286
“Seeing Value Changes” on page 287
“Displaying Variables in the Current Block” on page 289
“Viewing Variables in Different Scopes as Program Executes” on page 290
“Scoping Issues” on page 291
“Browsing for Variables” on page 293
“Displaying Local Variables and Registers” on page 294
“Dereferencing Variables Automatically” on page 295
“Displaying Areas of Memory” on page 298
“Displaying Machine Instructions” on page 299
“Rebinding the Variable Window” on page 300
“Closing Variable Windows” on page 300

Displaying Program Variables

You can display local and global variables by:

Diving into the variable in the Source or Stack Panes.
Selecting the View > Lookup Variable command. When prompted, enter
the name of the variable.

Using the Tools > Program Browser command.

After using one of these methods, TotalView displays a Variable Window
that contains the information you want. The Variable Window can display
simple variables, such as ints, sets of like elements such as arrays, or more
complicated variables defined as structures and arrays of structures.

If you keep a Variable Window open while a process or thread is running,
the information being displayed might not be accurate. TotalView updates
the window when the process or thread stops. If TotalView can’t find a
stack frame for a displayed local variable, the variable’s status is sparse,

CLI: dprint variable

Figure 173: Variable Window
for a Global Variable

Displaying Variables

TotalView Users Guide: version 8.8 287

since the variable no longer exists. The Status area can contain other infor-
mation that alerts you to issues and problems with a variable.

When you debug recursive code, TotalView doesn’t automatically refocus a
Variable Window onto different instances of a recursive function. If you
have a breakpoint in a recursive function, you need to explicitly open a new
Variable Window to see the local variable’s value in that stack frame.

Select the View > Compilation Scope > Floating command to tell TotalView
that it can refocus a Variable Window on different instances. For more infor-
mation, see “Viewing Variables in Different Scopes as Program Executes” on
page 290.

Controlling the Information Being Displayed
TotalView can display more information about your variable than its value.
This information is sometimes called meta-information. You can control how
much of this meta-information it displays by clicking on the More and Less
buttons. (See Figure 174 on page 288.)

As the button names indicate, clicking More displays more meta-informa-
tion and clicking Less displays less of it.

The two most useful fields are Type, which shows you what your variable’s
actual type is, and Expression, which allows you to control what is being
displayed. This is sometimes needed because TotalView tries to show the
type in the way that it thinks you declared it in your program.

The online help describes all the meta-information fields.

Seeing Value Changes

TotalView can tell you when a variable’s value changes in several ways.

When your program stops at a breakpoint, TotalView adds a yellow high-
light to the variable’s value if it has changed. This is shown in Figure 175
on page 288.
If the thread is stopped for another reason—for example, you’ve stepped
the thread—and the value has changed, TotalView does not add yellow
highlighting to the line.
You can tell TotalView to display the Last Value column. Do this by select-
ing Last Value in the column menu, which is displayed after you click on
the column menu () icon. (See Figure 176 on page 289.)
Notice that TotalView has highlighted all items that have changed within
an array. In a similar fashion it can show the individual items that have
changed within a structure.

In general, TotalView only retains the value for data items displayed within
the Variable Window. At times, TotalView may track adjacent values within

CLI: dwhere, dup, and dprint
Use dwhere to locate the stack frame, use dup to move to it, and
then use dprint to display the value.

Displaying Variables

288 Chapter 14: Examining and Changing Data

arrays and structures, but you should not rely on additional items being
tracked.

When you scroll the Variable Window, TotalView discards the information it is tracking
and fetches new information. So, while the values may have changed, TotalView does not
have information about this change. That is, TotalView only tracks what it is visible.
Similarly, when you scroll back to previously displayed values, TotalView needs to
refetch this information. Because it is “new” information, no “last values” exist.

Figure 174: Variable Window:
Using More and Less

Figure 175: Variable Window
With “Change”
Highlighting

Displaying Variables

TotalView Users Guide: version 8.8 289

The Expression List window, described in “Viewing a List of Variables” on
page 305, also highlights data and can display a Last Value column.

Seeing Structure Information
When TotalView displays a Variable Window, it displays structures in a com-
pact form, concealing the elements within the structure. Click the + button
to display these elements, or select the View > Expand All command to see
all entries. If you want to return the display to a more compact form, you
can click the – button to collapse one structure, or select the View >
Collapse All command to return the window to what it was when you first
opened it.

If a substructure contains more than about forty elements, TotalView does
not let you expand it in line. That is, it does not place a + symbol in front
of the substructure. To see the contents of this substructure, dive on it.

Similarly, if a structure contains an array as an element, TotalView only dis-
plays the array within the structure if it has less than about forty elements.
To see the contents of an embedded array, dive on it.

Displaying Variables in the Current Block

In many cases, you may want to see all of the variables in the current block.
If you dive on a block label in the Stack Frame Pane, TotalView opens a Vari-
able Window that contains just those variables. (See Figure 177 on
page 290.)

After you dive on a variable in this block window, TotalView displays a Vari-
able Window for that scoped variable. In this figure, block $b1 has two
nested blocks.

Figure 176: Variable Window
Showing Last Value
Column

Displaying Variables

290 Chapter 14: Examining and Changing Data

Viewing Variables in Different Scopes as Program
Executes

When TotalView displays a Variable Window, it understands the scope in
which the variable exists. As your program executes, this scope doesn’t
change. In other words, if you’re looking at variable my_var in one routine,
and you then execute your program until it is within a second subroutine
that also has a my_var variable, TotalView does not change the scope so
that you are seeing the in scope variable.

If you would like TotalView to update a variable’s scope as your program
executes, select the View > Compilation Scope > Floating command. This
tells TotalView that, when execution stops, it should look for the variable in
the current scope. If it finds the variable, it displays the variable contained
within the current scope.

Select the View > Compilation Scope > Fixed command to return TotalView
to its default behavior, which is not to change the scope.

Selecting floating scope can be very handy when you are debugging recur-
sive routines or have routines with identical names. For example, i, j, and k
are popular names for counter variables.

Figure 177: Displaying
Scoped Variables

Displaying Variables

TotalView Users Guide: version 8.8 291

Scoping Issues
When you dive into a variable from the Source Pane, the scope that
TotalView uses is that associated with the current frame’s PC; for example:

1: void f()
2: {
3: int x;
4: }
5:
6: int main()
7: {
8: int x;
9:}

If the PC is at line 3, which is in f(), and you dive on the x contained in
main(), TotalView displays the value for the x in f(), not the x in main(). In
this example, the difference is clear: TotalView chooses the PC’s scope
instead of the scope at the place where you dove. If you are working with
templated and overloaded code, determining the scope can be impossible,
since the compiler does not retain sufficient information. In all cases, you
can click the More button within the Variable window to see more informa-
tion about your variable. The Valid in Scope field can help you determine
which instance of a variable you located.

You can, of course, use the View > Lookup Variable command to locate the
correct instance.

Freezing Variable Window Data

Whenever execution stops, TotalView updates the contents of Variable Win-
dows. More precisely, TotalView reevaluates the data found with the
Expression area. If you do not want this reevaluation to occur, use the Vari-
able Window’s View > Freeze command. This tells TotalView that it should
not change the information that is displaying.

After you select this command, TotalView writes information into the win-
dow, letting you know that the data is frozen. (See Figure 178 on page 292.)

Selecting the View > Freeze command a second time tells TotalView that it
should evaluate this window’s expression whenever execution stops.

In most cases, you’ll want to compare this information with an unfrozen
copy. Do this by selecting the Window > Duplicate command before you
freeze the display. As these two windows are identical, it doesn’t matter
which one you freeze. If you use the Duplicate command after you freeze
the display, just select View > Freeze in one of the windows to get that win-
dow to update normally.

Locking the Address

The previous section discussed freezing the display so that TotalView does
not update the Variable Window’s contents. Sometimes you only want to
freeze the address, not the data at that address. Do this by selecting the

Displaying Variables

292 Chapter 14: Examining and Changing Data

View > Lock Address command. Figure 179 shows two Variable Windows,
one of which has had its address locked.

Using this command lets you continually reevaluate what is at that address
as execution progresses. Here are two examples:

If you need to look at a heap address access through a set of dive opera-
tions rooted in a stack frame that has become stale.
If you dive on a *this pointer to see the actual value after *this goes stale.

Figure 178: Variable Window
Showing Frozen State

Figure 179: Locked and
Unlocked Variable
Windows

Displaying Variables

TotalView Users Guide: version 8.8 293

Browsing for Variables

The Process Window Tools > Program Browser command displays a window
that contains all your executable’s components. By clicking on a library or
program name, you can access all of the variables contained in it. (See
Figure 180.)

The window at the top of the figure shows programs and libraries that are
loaded. If you have loaded more than one program with the File > New
Program command, TotalView only displays information for the currently
selected process. After diving on an entry in this window (labelled Dive 1),
TotalView displays a Variable Window that contains a list of files that make
up the program, as well as other related information.

Diving on an entry in this Variable Window (Dive 2 in this figure) changes the
display so that it contains variables and other information related to the
file. A list of functions defined within the program is at the end of this list.

Diving on a function changes the Variable Window again. The window
shown at the top of the next figure was created by diving on one of these
functions. The window shown in the center is the result of diving on a block
in that subroutine. The bottom window shows a variable. (See Figure 181
on page 294.)

Figure 180: Program
Browser and
Variable Windows
(Part 1)

Displaying Variables

294 Chapter 14: Examining and Changing Data

If you dive on a line in a Variable Window, the new contents replace the old
contents, and you can use the undive/redive buttons to move
back and forth.

Displaying Local Variables and Registers

In the Stack Frame Pane, diving on a function’s parameter, local variable, or
register tells TotalView to display information in a Variable Window. You can
also dive on parameters and local variables in the Source Pane. The dis-
played Variable Window shows the name, address, data type, and value for
the object. (See Figure 182 on page 295.)

Figure 181: Program
Browser and Variable
Window (Part 2)

Displaying Variables

TotalView Users Guide: version 8.8 295

The window at the top of the figure shows the result of diving on a register,
while the bottom window shows the results of diving on an array variable.

You can also display local variables by using the View > Lookup Variable
command. After TotalView displays a dialog box, enter the name of the vari-
able you want to see.

Dereferencing Variables Automatically

In most cases, you want to see what a pointer points to, rather than what
the value of its variable is. Using the controls on the File > Preferences
Pointer Dive Page (which is shown on the next page), you can tell TotalView
to automatically dereference pointers. (See Figure 183 on page 296.)

Dereferencing pointers is especially useful when you want to visualize the
data linked together with pointers, since it can present the data as a unified
array. Because the data appears as a unified array, you can use TotalView’s
array manipulation commands and the Visualizer to view the data.

Each pulldown list on the Pointer Dive Page has three settings: No, Yes, and
Yes (don’t push). The meaning for No is that automatic dereferencing does
not occur. The remaining two values tell TotalView to automatically derefer-
ence pointers. The difference between the two is based on whether you
can use the Back command to see the undereferenced pointer’s value. If

Figure 182: Diving on Local
Variables and Registers

CLI: dprint variable
This command lets you view variables and expressions without hav-
ing to select or find them.

Displaying Variables

296 Chapter 14: Examining and Changing Data

you choose Yes, you can see the value. If you choose Yes (don’t push), you
cannot use the Back command to see this pointer’s value.

Automatic dereferencing can occur in the following situations:

When TotalView initially displays a value.
When you dive on a value in an aggregate or structure.
When you use the Dive in All command.

Examining Memory

TotalView lets you display the memory used by a variable in different ways. If
you select the View > Examine Format > Structured or View > Examine
Format > Raw commands from within the Variable Window, TotalView dis-
plays raw memory contents. Figure 184 shows a structured view.

The way this command displays data is similar to the way dump commands such as od
that exist in your operating system display data.

When displaying a structured view, the left portion of the Variable Window
shows the elements of the data, whether it be a structure or an array. The right
portion shows the value of the data in the way that it is normally displayed

Figure 183: File > Preferences
Pointer Dive Page

CLI: TV::auto_array_cast_bounds
TV::auto_deref_in_all_c
TV::auto_deref_in_all_fortran
TV::auto_deref_initial_c
TV::auto_deref_initial_fortran
TV::auto_deref_nested_c
TV::auto_deref_nested_fortran

Displaying Variables

TotalView Users Guide: version 8.8 297

within TotalView. The right-most column displays the raw memory data. By
default, this information is displayed in hexadecimal. However, you can
change it to other formats by selecting a representation within the Format
pulldown. The following figure shows a raw display with this pulldown
extended:

In either display, you can change the number of bytes grouped together
and the amount of memory being displayed.

If you select the View > Block Status command, TotalView will also give you
additional information about memory. For example, you are told if the
memory is in a text, data, or bss section. (If you see unknown, you are prob-
ably seeing a stack variable.)

In addition, if you right-click on the header area of the table, a context
menu lets you add a Status column. This column contains information such
as “Allocated”, “PostGuard”, “Corrupted PreGuard”, etc.

Figure 184: View > Examine
Format > Stuctured
Display

Figure 185: View > Examine
Format > Raw Display

Displaying Variables

298 Chapter 14: Examining and Changing Data

If you have enabled the Memory Debugger, this additional information
includes letting you know if memory is allocated or deallocated or being
used by a guard block or hoarded.

Displaying Areas of Memory

You can display areas of memory using hexadecimal, octal, or decimal val-
ues. Do this by selecting the View > Lookup Variable command, and then
entering one of the following in the dialog box that appears:

An address
When you enter a single address, TotalView displays the word of data
stored at that address.

A pair of addresses
When you enter a pair of addresses, TotalView displays the data (in word
increments) from the first to the last address. To enter a pair of addresses,
enter the first address, a comma, and the last address.

All octal constants must begin with 0 (zero). Hexadecimal constants must begin with
0x.

The Variable Window for an area of memory displays the address and con-
tents of each word. (See Figure 186.)

TotalView displays the memory area’s starting location at the top of the
window’s data area. In the window, TotalView displays information in hexa-
decimal and decimal notation.

CLI: dprint address

CLI: dprint address,address

Figure 186: Variable Window
for an Area of Memory

Displaying Variables

TotalView Users Guide: version 8.8 299

If a Variable Window is already being displayed, you can change the type to
$void and add an array specifier. If you do this, the results are similar to
what is shown in this figure.

Changing Types to Display Machine Instructions
You can display machine instructions in a Variable Window by changing the
text in the Variable Window Type field. All you need do is edit the type string
to be an array of $code data types. You also need to add an array specifier to
tell TotalView how many instructions to display. For example, the following
changes the Variable Window so that it displays three machine instructions:

$code[3]

The Variable Window lists the following information about each machine
instruction:

Offset+Label The symbolic address of the location as a hexadecimal
offset from a routine name.

Code The hexadecimal value stored in the location.

Instruction The instruction and operands stored in the location.

You can also edit the value listed in the Value field for each machine
instruction.

Displaying Machine Instructions

You can display the machine instructions for entire routines as follows:

Dive on the address of an assembler instruction in the Source Pane (such
as main+0x10 or 0x60). A Variable Window displays the instructions for
the entire function, and highlights the instruction you dove on.
Dive on the PC in the Stack Frame Pane. A Variable Window displays the
instructions for the entire function that contains the PC, and also high-
lights the instruction pointed to by the PC. (See Figure 187.)

Cast a variable to type $code or array of $code.

Figure 187: Variable Window
with Machine Instructions

Diving in Variable Windows

300 Chapter 14: Examining and Changing Data

Rebinding the Variable Window

When you restart your program, TotalView must identify the thread in which
the variable existed. For example, suppose variable my_var was in thread
3.6. When you restart your program, TotalView tries to rebind the thread to
a newly created thread. Because the order in which the operating system
starts and executes threads can differ, there’s no guarantee that the thread
3.6 in the current context is the same thread as what it was previously.
Problems can occur. To correct rebinding issues, use the Threads box in the
Variable Window toolbar to specify the thread to which you want to bind
the variable.

Another way to use the Threads box is to change to a different thread to
see the variable or expression’s value there. For example, suppose variable
my_var is being displayed in thread 3.4. If you type 3.5 in the Threads box,
TotalView updates the information in the Expression List Window so that it
is what exists in thread 3.5.

Closing Variable Windows

When you finish analyzing the information in a Variable Window, use the
File > Close command to close the window. You can also use the File >
Close Similar command to close all Variable Windows.

Diving in Variable Windows

If the variable being displayed in a Variable Window is a pointer, structure, or
array, you can dive on the value. This new dive, which is called a nested dive,
tells TotalView to replace the information in the Variable Window with infor-
mation about the selected variable. If this information contains nonscalar
data types, you can also dive on these data types. Although a typical data
structure doesn’t have too many levels, repeatedly diving on data lets you
follow pointer chains. That is, diving lets you see the elements of a linked list.

The following topics contain information related to this topic:

“Displaying an Array of Structure’s Elements” on page 302
“Changing What the Variable Window Displays” on page 303

TotalView lets you see a member of an array of structures as a single array
across all the structures. See “Displaying an Array of Structure’s Elements” on
page 302 for more information.

TotalView remembers your dives. This means that you can use the undive/
redive buttons to view where you already dove. (See Figure 188 on
page 301.)

Diving in Variable Windows

TotalView Users Guide: version 8.8 301

The following figure shows a Variable Window after diving into a pointer
variable named sp with a type of simple*. The first Variable Window, which is
called the base window, displays the value of sp. (This is Window 1 in
Figure 189.)

The nested dive window (Window 2 in this figure) shows the structure refer-
enced by the simple* pointer.

You can manipulate Variable Windows and nested dive windows by using
the undive/redive buttons, as follows:

To undive from a nested dive, click the undive arrow button. The previ-
ous contents of the Variable Window appear.
To undive from all your dive operations, click the undive all arrow button.
To redive after you undive, click the redive arrow button. TotalView re-
stores a previously executed dive operation.
To redive from all your undive operations, click on the Redive All arrow
button.
If you dive on a variable that already has a Variable Window open, the
Variable Window pops to the top of the window display.

Figure 188: Undive/Redive
Buttons

Figure 189: Nested Dives

Diving in Variable Windows

302 Chapter 14: Examining and Changing Data

If you select the Window > Duplicate command, a new Variable Window
appears, which is a duplicate of the current Variable Window.

Displaying an Array of Structure’s Elements

The View > Dive In All command, which is also available when you right-
click on a field, lets you display an element in an array of structures as if it
were a simple array. For example, suppose you have the following Fortran
definition:

type i_c
integer r
complex c

end type i_C

type(i_c), target :: rc2(3,4)

After selecting an r element, select the View > Dive In All command.
TotalView displays all of the r elements of the rc2 array as if they were a sin-
gle array. (See Figure 190.)

The View > Dive in All command can also display the elements of a C array
of structures as arrays. Figure 191 on page 303 shows a unified array of
structures and a multidimensional array in a structure.

Figure 190: Displaying a
Fortran Structure

Diving in Variable Windows

TotalView Users Guide: version 8.8 303

As the array manipulation commands (described in Chapter 8) generally work on
what’s displayed and not what is stored in memory, TotalView commands that refine
and display array information work on this virtual array. For example, you can visual-
ize the array, obtain statistics about it, filter elements in it, and so on.

Figure 192 on page 304 is a high-level look at what a dive in all operation
does.

In this figure, the rounded rectangle represents a Variable Window. On the
left is an array of five structures. After you select the Dive in All command
with element a selected, TotalView replaces the contents of your Variable
Window with an array that contains all of these a elements.

Changing What the Variable Window Displays

When TotalView displays a Variable Window, the Expression field contains
either a variable or an expression. Technically, a variable is also an expres-
sion. For example, my_var.an_element is actually an addressing expression.

Figure 191: Displaying C
Structures and Arrays

Diving in Variable Windows

304 Chapter 14: Examining and Changing Data

Similarly, my_var.an_element[10] and my_var[10].an_element are also
expressions, since both TotalView and your program must figure out where
the data associated with the element resides.

The expression in the Expression field is dynamic. That is, you can tell
TotalView to evaluate what you enter before trying to obtain a memory
address. For example, if you enter my_var.an_element[i], TotalView evalu-
ates the value of i before it redisplays your information. A more compli-
cated example is my_var.an_element[i+1]. In this example, TotalView must
use its internal expression evaluation system to create a value before it
retrieves data values.

You can replace the variable expression with something completely differ-
ent, such as i+1, and TotalView simply displays the value produced by eval-
uating the expression.

Chapter 17, “Evaluating Expressions,” on page 383 has a discussion of the
evaluation system and typing expressions in an eval point in the Tools >
Evaluate Window. In contrast, the expressions you can type in the
Expression List Window are restricted with the principal restriction being
that what you type cannot have side effects. For example, you cannot use
an expression that contains a function call or an operator that changes
memory, such as ++ or --.

Figure 192: Dive in All
a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
a
a
a
a

Viewing a List of Variables

TotalView Users Guide: version 8.8 305

Viewing a List of Variables

As you debug your program, you may want to monitor a variable’s value as
your program executes. For many types of information, the Expression List
Window offers a more compact display than the Variable Window for dis-
playing scalar variables. (See Figure 193.)

The topics discussing the Expression List Window are:

“Entering Variables and Expressions” on page 305
“Entering Expressions into the Expression Column” on page 307
“Using the Expression List with Multi-process/Multi-threaded Programs” on
page 309
“Reevaluating, Reopening, Rebinding, and Restarting” on page 309
“Seeing More Information” on page 310
“Sorting, Reordering, and Editing” on page 311

Entering Variables and Expressions

You can place information in the first column of the Expression List Window
in the following ways:

Type information into a blank cell in the Expression column. When you do
this, the context for what you are typing is the current PC in the process
and thread indicated in the Threads box. If you type my_var in the win-
dow shown in the previous section, you would type the value of my_var
in process 1, thread 1.
Right-click on a line in the Process Window Source or Stack Frame Panes.
From the displayed context menu, select Add to Expression List. The fol-
lowing figure shows the context menu that TotalView displays in the Source
Pane: (See Figure 194 on page 306.)
Right-click on something in a Variable Window. Select Add to Expression
List from the displayed context menu. You can also use the View > Add
to Expression List command.

Figure 193: The Tools >
Expression List Window

Viewing a List of Variables

306 Chapter 14: Examining and Changing Data

You can bring up this window directly by using the Tools > Expression List
command.

When you enter information in the Tools > Expression List Window, where
you place the cursor and what you select make a difference. If you click on
a variable or select a row in the Variable Window, TotalView adds that vari-
able to the Expression List Window. If you instead select text, TotalView
adds that text. What’s the difference? The Expression List figure in the pre-
vious section shows three variations of d1_array, and each was obtained in
a different way, as follows:

The first entry was added by just selecting part of what was displayed in
the Source Pane.
The second entry was added by selecting a row in the Variable Window.
The third entry was added by clicking at a random point in the variable’s
text in the Source Pane.

You can tell TotalView to look for a variable in the scope that exists when
your program stops executing, rather than keeping it locked to the scope
from which it was added to the Tools > Expression List Window. Do this by
right-clicking an item, then selecting Compilation Scope > Floating from
the context menu.

For more information, see “Viewing Variables in Different Scopes as Program Exe-
cutes” on page 290.

Figure 194: A Context Menu

Figure 195: Expression List
Window Context Menu

Viewing a List of Variables

TotalView Users Guide: version 8.8 307

Seeing Variable Value Changes in the Expression List
Window

TotalView can tell you when a variable’s value changes in several ways.

When your program stops at a breakpoint, TotalView adds a yellow high-
light to the variable’s value if it has changed. This is shown in Figure 196.

If the thread is stopped for another reason—for example, you’ve stepped
the thread—and the value has changed, TotalView does not add yellow
highlighting to the line.
You can tell TotalView to display the Last Value column. Do this by select-
ing Last Value in the column menu, which is displayed after you click on
the column menu () icon. (See Figure 197 on page 307.)

Notice that TotalView has highlighted all items that have changed within
an array. In a similar fashion it can show the individual items that have
changed within a structure.

Entering Expressions into the Expression Column

The simple answer is just about anything except function calls. (See “Enter-
ing Variables and Expressions” on page 305 for more information.) A variable
is, after all, a type of expression. The following Expression List Window
shows four different types of expressions. (See Figure 198 on page 308.)

Figure 196: Expression List
Window With “Change”
Highlighting

Figure 197: Variable Window
Showing Last Value
Column

Viewing a List of Variables

308 Chapter 14: Examining and Changing Data

The expressions in this window are:

i A variable with one value. The Value column shows its
value.

d1_array An aggregate variable; that is, an array, a structure, a
class, and so on. Its value cannot be displayed in one
line. Consequently, TotalView just gives you some infor-
mation about the variable. To see more information,
dive on the variable. After diving, TotalView displays the
variable in a Variable Window.

When you place an aggregate variable in the Expression
column, you need to dive on it to get more informa-
tion.

d1_array[1].d1_v
An element in an array of structures. If TotalView can
resolve what you enter in the Expression column into a
single value, it displays a value in the Value column. If
TotalView can’t, it displays information in the same way
that it displays information in the d1_array example.

d1_array[i-1].d1_v
An element in an array of structures. This expression
differs from the previous example in that the array in-
dex is an expression. Whenever execution stops in the
current thread, TotalView reevaluates the i-1 expres-
sion. This means that TotalView might display the value
of a different array item every time execution stops.

The expressions you enter cannot include function calls.

You can also enter methods and functions within an Expression. Figure 199
shows two get methods and a get method used in an expression.

Figure 198: The Tools >
Expression List Window

Figure 199: Using Methods in
the Tools > Expression
List Window

Viewing a List of Variables

TotalView Users Guide: version 8.8 309

In a similar fashion, you can even directly enter functions. (See Figure 200.)

Using the Expression List with Multi-process/Multi-
threaded Programs

You can change the thread in which TotalView evaluates your expressions
by typing a new thread value in the Threads box at the top of the window. A
second method is to select a value by using the drop-down list in the
Threads box.

When you use an Add to Expression List command, TotalView checks
whether an Expression List Window is already open for the current thread.
If one is open, TotalView adds the variable to the bottom of the list. If an
Expression List Window isn’t associated with the thread, TotalView dupli-
cates an existing window, changes the thread of the duplicated window,
and then adds the variable to all open Tools > Expression List Windows.
That is, you have two Tools > Expression List Windows. Each has the same
list of expressions. However, the results of the expression evaluation differ
because TotalView is evaluating them in different threads.

In all cases, the list of expressions in all Tools > Expression List Windows is
the same. What differs is the thread in which TotalView evaluates the win-
dow’s expressions.

Similarly, if TotalView is displaying two or more Tools > Expression List Win-
dows, and you send a variable from yet another thread, TotalView adds the
variable to all of them, duplicates one of them, and then changes the
thread of the duplicated window.

Reevaluating, Reopening, Rebinding, and Restarting

This section explains what happens in the Tools > Expression List Window
as TotalView performs various operations.

Reevaluating Contents: TotalView reevaluates the value of everything
in the Tools > Expression List Window Expression column whenever your
thread stops executing. More precisely, if a thread stops executing,
TotalView reevaluates the contents of all Tools > Expression List Windows
associated with the thread. In this way, you can see how the values of these
expressions change as your program executes.

Figure 200: Using Functions
in the Tools > Expression
List Window

Viewing a List of Variables

310 Chapter 14: Examining and Changing Data

You can use the Window > Update All command to update values in all
other Tools > Expression List Windows.

Reopening Windows: If you close all open Tools > Expression List
Windows and then reopen one, TotalView remembers the expressions you
add. That is, if the window contains five variables when you close it, it has
the same five variables when you open it. The thread TotalView uses to
evaluate the window’s contents is the Process Window from which you
invoked the Tools > Expressions List command.

Rebinding Windows: The values displayed in an Expression List Win-
dow are the result of evaluating the expression in the thread indicated in
the Threads box at the top of the window. To change the thread in which
TotalView evaluates these expressions, you can either type a new thread
value in the Threads box or select a thread from the pulldown list in the
Threads box. (Changing the thread to evaluate expressions in that thread’s
context is called rebinding.)

Restarting a Program: When you restart your program, TotalView
attempts to rebind the expressions in a Tools > Expression List Window to
the correct thread. Unfortunately, it is not possible to select the right thread
with 100% accuracy. For example, the order in which your operating system
creates threads can differ each time you run your program. Or, program
logic can cause threads to be opened in a different order.

You may need to manually change the thread by using the Threads box at
the top of the window.

Seeing More Information

When you first open the Tools > Expression List Window, it contains two col-
umns, but TotalView can display other columns. If you right-click on a col-
umn heading line, TotalView displays a context menu that indicates all pos-
sible columns. Clicking on a heading name listed in the context menu
changes if from displayed to hidden or vice versa.

Even when you add additional columns, the Expression List Window might
not show you what you need to know about a variable. If you dive on a row

Figure 201: The Tools >
Expression List Window
Showing Column Selector

Viewing a List of Variables

TotalView Users Guide: version 8.8 311

(or select Dive from a context menu), TotalView opens a Variable Window
for what you just dove on.

You can combine the Expression List Window and diving to bookmark your
data. For example, you can enter the names of structures and arrays. When
you want to see information about them, dive on the name. In this way, you
don’t have to clutter up your screen with the Variable Windows that you
don’t need to refer to often.

Sorting, Reordering, and Editing

This section describes operations you can perform on Tools > Expression
List Window data.

Sorting Contents: You can sort the contents of the Tools > Expression
List Window by clicking on the column header. After you click on the head-
ing, TotalView adds an indicator that shows that the column was sorted and
the way in which it was sorted. In the figure in the previous topic, the Value
column is sorted in ascending order.

Reordering Row Display: The up and down arrows () on the right
side of the Tools > Expression List Window toolbar let you change the order
in which TotalView displays rows. For example, clicking the down arrow
moves the currently selected row (indicated by the highlight) one row lower
in the display.

Editing Expressions: You can change an expression by clicking in it,
and then typing new characters and deleting others. Select Edit > Reset
Defaults to remove all edits you make. When you edit an expression,
TotalView uses the scope that existed when you created the variable.

Changing Data Type: You can edit an expression’s data type by dis-
playing the Type column and making your changes. Select Edit > Reset
Defaults to remove all edits you make.

Changing an Expression’s Value: You can change an expression’s
value if that value is stored in memory by editing the contents of the Value
column.

About Other Commands: You can also use the following commands
when working with expressions:

Edit > Delete Expression
Deletes the selected row. This command is also on a
context (right-click) menu. If you have more than one
Expression List Window open, deleting a row from one
window deletes the row from all open windows.

Edit > Delete All Expressions
Deletes all of the Expression List Window rows. If you
have more than one Expression List Window open, de-
leting all expressions from one window deletes all ex-
pressions in all windows.

Changing the Values of Variables

312 Chapter 14: Examining and Changing Data

View > Dive Displays the expression or variable in a Variable Win-
dow. Although this command is also on a context
menu, you can just double-click or middle-click on the
variable’s name instead.

Edit > Duplicate Expression
Duplicates the selected column. You would duplicate a
column to see a similar variable or expression. For ex-
ample, if myvar_looks_at[i] is in the Expression column,
duplicating it and then modifying the new row is an
easy way to see myvar_looks_at[i] and
myvar_looks_at[i+j-k] at the same time.

This command is also on a context menu.

Changing the Values of Variables

You can change the value of any variable or the contents of any memory
location displayed in a Variable Window, Expression List Window, or Stack
Frame Pane by selecting the value and typing the new value. In addition to
typing a value, you can also type an expression. For example, you can enter
12*12 as shown in the following figure. You can include logical operators in
all TotalView expressions. (See Figure 202.)

In most cases, you can edit a variable’s value. If you right-click on a vari-
able and the Change Value command isn’t faded, you can edit the dis-
played value.

CLI: set my_var [expr 1024*1024]
dassign int8_array(3) $my_var

Changing a Variable’s Data Type

TotalView Users Guide: version 8.8 313

TotalView does not let you directly change the value of bit fields; you can
use the Tools > Evaluate Window to assign a value to a bit field. See Chap-
ter 17, “Evaluating Expressions,” on page 383.

Changing a Variable’s Data Type

The data type declared for the variable determines its format and size
(amount of memory). For example, if you declare an int variable, TotalView
displays the variable as an integer.

The following sections discuss the different aspects of data types:

“Displaying C and C++ Data Types” on page 314
“Viewing Pointers to Arrays” on page 316
“Viewing Arrays” on page 316
“Viewing typedef Types” on page 317

Figure 202: Using an
Expression to Change a
Value

CLI: Tcl lets you use operators such as & and | to manipulate bit fields
on Tcl values.

Changing a Variable’s Data Type

314 Chapter 14: Examining and Changing Data

“Viewing Structures” on page 317
“Viewing Unions” on page 317
“Casting Using the Built-In Types” on page 317

You can change the way TotalView displays data in the Variable Window and
the Expression List Window by editing the data type. This is known as cast-
ing. TotalView assigns types to all data types, and in most cases, they are
identical to their programming language counterparts.

When a C or C++ variable is displayed in TotalView, the data types are iden-
tical to their C or C++ type representations, except for pointers to arrays.
TotalView uses a simpler syntax for pointers to arrays. (See “Viewing Pointers to
Arrays” on page 316.) Similarly, when Fortran is displayed in TotalView, the
types are identical to their Fortran type representations for most data types
including INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and
CHARACTER.

If the window contains a structure with a list of fields, you can edit the data
types of the listed fields.

When you edit a data type, TotalView changes how it displays the variable in the cur-
rent window. Other windows listing the variable do not change.

Displaying C and C++ Data Types

The syntax for displaying data is identical to C and C++ language cast syn-
tax for all data types except pointers to arrays. That is, you use C and C++
cast syntax for data types. For example, you can cast using types such as
int, char, unsigned, float, double, union, all named struct types, and so on.
In addition, TotalView has a built-in type called $string. Unless you tell it
otherwise, TotalView maps char arrays to this type. (For information on
wide characters, see “Viewing Wide Character Arrays ($wchar Data Types)” on
page 320.)

Read TotalView types from right to left. For example, $string*[20]* is a
pointer to an array of 20 pointers to $string.

The following table shows some common TotalView data types:

You can enter C and C++ Language cast syntax in the Type field.
Figure 203 on page 315 shows three different casts:

The two Variable Windows cast the same data in the same way. In the top-left
window, a cast was used in the Expression field. In the other Variable Window,

Data Type String Description
int Integer
int* Pointer to an integer
int[10] Array of 10 integers
$string Null-terminated character string
$string** Pointer to a pointer to a null-terminated character string
$string*[20]* Pointer to an array of 20 pointers to null-terminated strings

Changing a Variable’s Data Type

TotalView Users Guide: version 8.8 315

the data type was changed from int to $char. In the first cast, TotalView
changed the Type for you. In the second, it did not alter the Expression field.

The Expression List Window contains two casting examples. The first casts a
function’s returned value to long long. The second is the same cast as was
made in the two Variable Windows.

TotalView also lets you cast a variable into an array. In the GUI, add an array
specifier to the Type declaration. For example, adding [3] to a variable
declared as an int changes it into an array of three ints.

When TotalView displays some complex arrays and structures, it displays
the compound object or array types in the Variable Window.

Editing a compound object or array data type can produce undesirable results.
TotalView tries to give you what you ask for, so if you get it wrong, the results are unpre-
dictable. Fortunately, the remedy is quite simple: close the Variable Window and start
over again.

The following sections discuss more complex data types.

“Viewing Pointers to Arrays” on page 316
“Viewing Arrays” on page 316
“Viewing typedef Types” on page 317
“Viewing Structures” on page 317
“Viewing Unions” on page 317

Figure 203: Three Casts

Changing a Variable’s Data Type

316 Chapter 14: Examining and Changing Data

Viewing Pointers to Arrays

Suppose you declared a variable vbl as a pointer to an array of 23 pointers
to an array of 12 objects of type mytype_t. The C language declaration for
this is:

mytype_t (*(*vbl)[23]) [12];

Here is how you would cast the vbl variable to this type:

(mytype_t (*(*)[23])[12])vbl

The TotalView cast for vbl is:

mytype_t[12]*[23]*

Viewing Arrays

When you specify an array, you can include a lower and upper bound sepa-
rated by a colon (:).

See Chapter 15, “Examining Arrays,” on page 335 for more information on arrays.

By default, the lower bound for a C or C++ array is 0, and the lower bound
for a Fortran array is 1. In the following example, an array of ten integers is
declared in C and then in Fortran:

int a[10];

integer a(10)

The elements of the array range from a[0] to a[9] in C, while the elements of
the equivalent Fortran array range from a(1) to a(10).

TotalView also lets you cast a variable to an array. In the GUI, just add an
array specifier to the Type declaration. For example, adding (3) to a variable
declared as an integer changes it to an array of three integers.

When the lower bound for an array dimension is the default for the lan-
guage, TotalView displays only the extent (that is, the number of elements
in the dimension). Consider the following Fortran array declaration:

integer a(1:7,1:8)

Since both dimensions of this Fortran array use the default lower bound,
which is 1, TotalView displays the data type of the array by using only the
extent of each dimension, as follows:

integer(7,8)

If an array declaration doesn’t use the default lower bound, TotalView dis-
plays both the lower bound and upper bound for each dimension of the
array. For example, in Fortran, you declare an array of integers with the first
dimension ranging from –1 to 5 and the second dimension ranging from 2
to 10, as follows:

integer a(-1:5,2:10)

TotalView displays this the same way.

Changing a Variable’s Data Type

TotalView Users Guide: version 8.8 317

When editing an array’s dimension, you can enter just the extent (if using
the default lower bound), or you can enter the lower and upper bounds
separated by a colon.

TotalView also lets you display a subsection of an array, or filter a scalar array
for values that match a filter expression. See “Displaying Array Slices” on
page 336 and “Filtering Array Data Overview” on page 339 for more information.

Viewing typedef Types

TotalView recognizes the names defined with typedef, and displays these
user-defined types; for example:

typedef double *dptr_t;
dptr_t p_vbl;

TotalView displays the type for p_vbl as dptr_t.

Viewing Structures

TotalView lets you use the struct keyword as part of a type string. In most
cases, this is optional.

This behavior depends upon which compiler you are using. In most cases, you’ll see
what is described here.

If you have a structure and another data type with the same name, how-
ever, you must include the struct keyword so that TotalView can distinguish
between the two data types.

If you use a typedef statement to name a structure, TotalView uses the
typedef name as the type string. Otherwise, TotalView uses the structure tag
for the struct.

Viewing Unions

TotalView displays a union in the same way that it displays a structure.
Even though the fields of a union are overlaid in storage, TotalView displays
the fields on separate lines. (See Figure 204 on page 318.)

Casting Using the Built-In Types

TotalView provides a number of predefined types. These types are pre-
ceded by a $. You can use these built-in types anywhere you can use the
ones defined in your programming language. These types are also useful in

CLI: dprint variable

Changing a Variable’s Data Type

318 Chapter 14: Examining and Changing Data

debugging executables with no debugging symbol table information. The
following table describes the built-in types:

Figure 204: Displaying a
Union

Type String Language Size Description
$address C void* Void pointer (address).
$char C char Character.
$character Fortran character Character.
$code C architecture-

dependent
Machine instructions.
The size used is the number of
bytes required to hold the
shortest instruction for your
computer.

$complex Fortran complex Single-precision floating-point
complex number.
The complex types contain a
real part and an imaginary part,
which are both of type real.

$complex_8 Fortran complex*8 A real*4-precision floating-
point complex number.
The complex*8 types contain a
real part and an imaginary part,
which are both of type real*4.

$complex_16 Fortran complex*16 A real*8-precision floating-
point complex number.
The complex*16 types contain a
real part and an imaginary part,
which are both of type real*8.

$double C double Double-precision floating-point
number.

$double_precision Fortran double precision Double-precision floating-point
number.

Changing a Variable’s Data Type

TotalView Users Guide: version 8.8 319

$extended C architecture-
dependent;
often long
double

Extended-precision floating-
point number. Extended-
precision numbers must be
supported by the target
architecture. In addition, the
format of extended floating
point numbers varies depending
on where it's stored. For
example, the x86 register has a
special 10-byte format, which is
different than the in-memory
format. Consult your vendor’s
architecture documentation for
more information.

$float C float Single-precision floating-point
number.

$int C int Integer.
$integer Fortran integer Integer.
$integer_1 Fortran integer*1 One-byte integer.
$integer_2 Fortran integer*2 Two-byte integer.
$integer_4 Fortran integer*4 Four-byte integer.
$integer_8 Fortran integer*8 Eight-byte integer.
$logical Fortran logical Logical.
$logical_1 Fortran logical*1 One-byte logical.
$logical_2 Fortran logical*2 Two-byte logical.
$logical_4 Fortran logical*4 Four-byte logical.
$logical_8 Fortran logical*8 Eight-byte logical.
$long C long Long integer.
$long_long C long long Long long integer.
$real Fortran real Single-precision floating-point

number.
When using a value such as real,
be careful that the actual data
type used by your computer is
not real*4 or real*8, since
different results can occur.

$real_4 Fortran real*4 Four-byte floating-point
number.

$real_8 Fortran real*8 Eight-byte floating-point
number.

$real_16 Fortran real*16 Sixteen-byte floating-point
number.

$short C short Short integer.
$string C char Array of characters.
$void C long Area of memory.
$wchar C platform-specific Platform-specific wide character

used by wchar_t data types
$wchar_s16 C 16 bits wide character whose storage is

signed 16 bits (not currently
used by any platform)

Type String Language Size Description

Changing a Variable’s Data Type

320 Chapter 14: Examining and Changing Data

Viewing Character Arrays ($string Data Type)
If you declare a character array as char vbl[n], TotalView automatically
changes the type to $string[n]; that is, a null-terminated, quoted string with
a maximum length of n. This means that TotalView displays an array as a
quoted string of n characters, terminated by a null character. Similarly,
TotalView changes char* declarations to $string* (a pointer to a null-termi-
nated string).

Since most character arrays represent strings, the TotalView $string type
can be very convenient. But if this isn’t what you want, you can edit the
$string and change it back to a char (or char[n]), to display the variable as
you declared it.

Viewing Wide Character Arrays ($wchar Data Types)
If you create an array of wchar_t wide characters, TotalView automatically
changes the type to $wstring[n]; that is, it is displayed as a null-terminated,
quoted string with a maximum length of n. For an array of wide characters,
the null terminator is L’0’. Similarly, TotalView changes wchar_t* declara-
tions to $wstring* (a pointer to a null-terminated string). (See Figure 205
on page 321.)

This figure shows the declaration of two wide characters in the Process
Window. The Expression List Window shows how TotalView displays their
data. The L in the data indicates that TotalView is displaying a wide literal.

Since most wide character arrays represent strings, the $wstring type can
be very convenient. But if this isn’t what you want, you can edit the
$wstring and change it back to a wchar_t (or wchar[n] or $wchar or
$wchar[n]), to display the variable as you declared it.

$wchar_u16 C 16 bits wide character whose storage is
unsigned 16 bits

$wchar_s32 C 32 bits wide character whose storage is
signed 32 bits

$wchar_u32 C 32 bits wide character whose storage is
unsigned 32 bits

$wstring C platform-specific Platform-specific string
composed of $wchar characters

$wstring_s16 C 16 bits String composed of $wchar_s16
characters (not currently used
by any platform)

$wstring_u16 C 16 bits String composed of
$wchar_u16 characters

$wstring_s32 C 32 bits String composed of $wchar_s32
characters

$wstring_u32 C 32 bits String composed of
$wchar_u32 characters

Type String Language Size Description

Changing a Variable’s Data Type

TotalView Users Guide: version 8.8 321

If the wide character uses from 9 to 16 bits, TotalView displays the charac-
ter using the following universal-character code representation:

\uXXXX

X represents a hexadecimal digit. If the character uses from 17 to 32 bits,
TotalView uses the following representation:

\UXXXXXXXX

Platforms and compilers differ in the way they represent wchar_t. In consequence,
TotalView allows you to see this information in platform-specific ways. For example, you
can cast a string to $wstring_s16 or $wstring_s32. In addition, many compilers
have problems either using wide characters or handing off information about wide char-
acters so that they can be interpreted by any debugger (not just TotalView). For infor-
mation on supported compilers, see the TotalView Release Notes at http://www.totalview-
tech.com/Support/release_notes.php.

Viewing Areas of Memory ($void Data Type)
TotalView uses the $void data type for data of an unknown type, such as
the data contained in registers or in an arbitrary block of memory. The
$void type is similar to the int type in the C Language.

If you dive on registers or display an area of memory, TotalView lists the
contents as a $void data type. If you display an array of $void variables, the
index for each object in the array is the address, not an integer. This
address can be useful when you want to display large areas of memory.

Figure 205: Displaying
wchar_t Data

Changing a Variable’s Data Type

322 Chapter 14: Examining and Changing Data

If you want, you can change a $void to another type. Similarly, you can
change any type to a $void to see the variable in decimal and hexadecimal
formats.

Viewing Instructions ($code Data Type)
TotalView uses the $code data type to display the contents of a location as
machine instructions. To look at disassembled code stored at a location,
dive on the location and change the type to $code. To specify a block of
locations, use $code[n], where n is the number of locations being dis-
played.

Viewing Opaque Data
An opaque type is a data type that could be hidden, not fully specified, or
be defined in another part of your program. For example, the following C
declaration defines the data type for p to be a pointer to struct foo, and
foo is not yet defined:

struct foo;
struct foo *p;

When TotalView encounters a variable with an opaque type, it searches for
a struct, class, union, or enum definition with the same name as the opaque
type. If TotalView doesn’t find a definition, it displays the value of the vari-
able using an opaque type name; for example:

(Opaque foo)

Some compilers do not store sufficient information for TotalView to locate
the type. This could be the reason why TotalView uses the opaque type.

You can tell TotalView to use the correct data type by having it read the
source file. For example, if TotalView is showing you (Opaque foo) and you
know that struct foo is defined in source file foo.c, use the File > Open
Source Command. While this command’s primary purpose is to tell TotalView
to display the file within the Process Window, it also causes TotalView to read
the file’s debugging information. As a side-effect, struct foo should now be
defined. Because TotalView now knows its definition, it can resolve the
opaque type.

Type-Casting Examples

This section contains three type-casting examples:

Displaying Declared Arrays
Displaying Allocated Arrays
Displaying the argv Array

Changing the Address of Variables

TotalView Users Guide: version 8.8 323

Displaying Declared Arrays
TotalView displays arrays the same way it displays local and global vari-
ables. In the Stack Frame or Source Pane, dive on the declared array. A Vari-
able Window displays the elements of the array.

Displaying Allocated Arrays
The C Language uses pointers for dynamically allocated arrays; for example:

int *p = malloc(sizeof(int) * 20);

Since TotalView doesn’t know that p actually points to an array of integers,
you need to do several things to display the array:

1 Dive on the variable p of type int*.
2 Change its type to int[20]*.
3 Dive on the value of the pointer to display the array of 20 integers.

Displaying the argv Array
Typically, argv is the second argument passed to main(), and it is either a
char **argv or char *argv[]. Suppose argv points to an array of three point-
ers to character strings. Here is how you can edit its type to display an
array of three pointers, as follows:

1 Select the type string for argv.

2 Edit the type string by using the field editor commands. Change it to:
$string*[3]*

3 To display the array, dive on the value field for argv. (See Figure 206 on
page 324.))

Changing the Address of Variables

You can edit the address of a variable in a Variable Window by editing the
value shown in the Address field. When you edit this address, the Variable
Window shows the contents of the new location.

You can also enter an address expression such as 0x10b8 – 0x80 in this area.

CLI: dprint array-name

CLI: dprint argv

CLI: dprint {($string*[3]*)argv}

Displaying C++ Types

324 Chapter 14: Examining and Changing Data

Displaying C++ Types

Viewing Classes

TotalView displays C++ classes and accepts class as a keyword. When you
debug C++, TotalView also accepts the unadorned name of a class, struct,
union, or enum in the type field. TotalView displays nested classes that use
inheritance, showing derivation by indentation.

Some C++ compilers do not write accessibility information. In these cases, TotalView
cannot display this information.

Figure 206: Editing the argv
Argument

Displaying C++ Types

TotalView Users Guide: version 8.8 325

For example, Figure 207 displays an object of a class c.

Its definition is as follows:

class b {
char * b_val;

public:
b() {b_val = “b value“;}

};

class d : virtual public b {
char * d_val;

public:
d() {d_val = “d value“;}

};

class e {
char * e_val;

public:
e() {e_val = “e value“;}

};

class c : public d, public e {
char * c_val;

public:
c() {c_val = “c value“;}

};

TotalView tries to display the correct data when you change the type of a
Variable Window while moving up or down the derivation hierarchy. Unfor-
tunately, many compilers do not contain the information that TotalView
needs so you might need to cast your class.

Figure 207: Displaying C++
Classes That Use
Inheritance

Displaying Fortran Types

326 Chapter 14: Examining and Changing Data

Displaying Fortran Types

TotalView lets you display FORTRAN 77 and Fortran 90 data types.

The topics in this section describe the various types and how the debugger
handles them:

“Displaying Fortran Common Blocks” on page 326
“Displaying Fortran Module Data” on page 326
“Debugging Fortran 90 Modules” on page 328
“Viewing Fortran 90 User-Defined Types” on page 329
“Viewing Fortran 90 Deferred Shape Array Types” on page 329
“Viewing Fortran 90 Pointer Types” on page 330
“Displaying Fortran Parameters” on page 331

Displaying Fortran Common Blocks

For each common block defined in the scope of a subroutine or function,
TotalView creates an entry in that function’s common block list. The Stack
Frame Pane displays the name of each common block for a function. The
names of common block members have function scope, not global scope.

If you dive on a common block name in the Stack Frame Pane, the debug-
ger displays the entire common block in a Variable Window, as shown in
(See Figure 208 on page 327.)

Window 1 in this figure shows a common block list in a Stack Frame Pane.
After several dives, Window 2 contains the results of diving on the com-
mon block.

If you dive on a common block member name, TotalView searches all com-
mon blocks in the function’s scope for a matching member name, and dis-
plays the member in a Variable Window.

Displaying Fortran Module Data

TotalView tries to locate all data associated with a Fortran module and dis-
play it all at once. For functions and subroutines defined in a module,
TotalView adds the full module data definition to the list of modules dis-
played in the Stack Frame Pane.

TotalView only displays a module if it contains data. Also, the amount of
information that your compiler gives TotalView can restrict what’s displayed.

CLI: dprint variable-name

Displaying Fortran Types

TotalView Users Guide: version 8.8 327

Although a function may use a module, TotalView doesn’t always know if
the module was used or what the true names of the variables in the module
are. If this happens, either of the following occurs:

Module variables appear as local variables of the subroutine.
A module appears on the list of modules in the Stack Frame Pane that
contains (with renaming) only the variables used by the subroutine.

Alternatively, you can view a list of all the known modules by using the
Tools > Fortran Modules command. Because Fortran modules display in a
Variable Window, you can dive on an entry to display the actual module
data, as shown in Figure 209 on page 328.

Figure 208: Diving on a
Common Block List in the
Stack Frame Pane

CLI: dprint variable-name

Displaying Fortran Types

328 Chapter 14: Examining and Changing Data

If you are using the SUNPro compiler, TotalView can only display module data if you force
it to read the debug information for a file that contains the module definition or a module
function. For more information, see “Finding the Source Code for Functions” on page 227.

Debugging Fortran 90 Modules

Fortran 90 lets you place functions, subroutines, and variables inside mod-
ules. You can then include these modules elsewhere by using a USE com-
mand. When you do this, the names in the module become available in the
using compilation unit, unless you either exclude them with a USE ONLY
statement or rename them. This means that you don’t need to explicitly
qualify the name of a module function or variable from the Fortran source
code.

When debugging this kind of information, you need to know the location of
the function being called. Consequently, TotalView uses the following syn-
tax when it displays a function contained in a module:

modulename`functionname

You can also use this syntax in the File > New Program and View > Lookup
Variable commands.

Fortran 90 also lets you create a contained function that is only visible in
the scope of its parent and siblings. There can be many contained func-

Figure 209: Fortran
Modules Window

Displaying Fortran Types

TotalView Users Guide: version 8.8 329

tions in a program, all using the same name. If the compiler gave TotalView
the function name for a nested function, TotalView displays it using the fol-
lowing syntax:

parentfunction()`containedfunction

Viewing Fortran 90 User-Defined Types

A Fortran 90 user-defined type is similar to a C structure. TotalView displays
a user-defined type as type(name), which is the same syntax used in Fortran
90 to create a user-defined type. For example, the following code fragment
defines a variable typ2 of type(whopper):

TYPE WHOPPER
LOGICAL, DIMENSION(ISIZE) :: FLAGS
DOUBLE PRECISION, DIMENSION(ISIZE) :: DPSA
DOUBLE PRECISION, DIMENSION(:), POINTER :: DPPA

END TYPE WHOPPER

TYPE(WHOPPER), DIMENSION(:), ALLOCATABLE :: TYP2

TotalView displays this type. (See Figure 210.)

Viewing Fortran 90 Deferred Shape Array Types

Fortran 90 lets you define deferred shape arrays and pointers. The actual
bounds of a deferred shape array are not determined until the array is allo-
cated, the pointer is assigned, or, in the case of an assumed shape argu-
ment to a subroutine, the subroutine is called. TotalView displays the type
of deferred shape arrays as type(:).

When TotalView displays the data for a deferred shape array, it displays the
type used in the definition of the variable and the actual type that this
instance of the variable has. The actual type is not editable, since you can

CLI: dprint module_name‘variable_name

Figure 210: Fortran 90 User-
Defined Type

Displaying Fortran Types

330 Chapter 14: Examining and Changing Data

achieve the same effect by editing the definition’s type. The following
example shows the type of a deferred shape rank 2 array of real data with
runtime lower bounds of –1 and 2, and upper bounds of 5 and 10:

Type: real(:,:)
Actual Type: real(-1:5,2:10)

Slice: (:,:)

Viewing Fortran 90 Pointer Types

A Fortran 90 pointer type lets you point to scalar or array types.

TotalView implicitly handles slicing operations that set up a pointer or
assumed shape subroutine argument so that indices and values it displays
in a Variable Window are the same as in the Fortran code; for example:

integer, dimension(10), target :: ia
integer, dimension(:), pointer :: ip
do i = 1,10

ia(i) = i
end do
ip => ia(10:1:-2)

After diving through the ip pointer, TotalView displays the windows shown
in Figure 211:

The address displayed is not that of the array’s base. Since the array’s
stride is negative, array elements that follow are at lower absolute
addresses. Consequently, the address displayed is that of the array element

Figure 211: Fortran 90
Pointer Value

Displaying Thread Objects

TotalView Users Guide: version 8.8 331

that has the lowest index. This might not be the first displayed element if
you used a slice to display the array with reversed indices.

Displaying Fortran Parameters

A Fortran PARAMETER defines a named constant. If your compiler generates
debug information for parameters, they are displayed in the same way as
any other variable. However, some compilers do not generate information
that TotalView can use to determine the value of a PARAMETER. This means
that you must make a few changes to your program if you want to see this
type of information.

If you’re using Fortran 90, you can define variables in a module that you ini-
tialize to the value of these PARAMETER constants; for example:

INCLUDE ‘PARAMS.INC’
MODULE CONSTS
SAVE
INTEGER PI_C = PI
...
END MODULE CONSTS

The PARAMS.INC file contains your parameter definitions. You then use
these parameters to initialize variables in a module. After you compile and
link this module into your program, the values of these parameter variables
are visible.

If you’re using FORTRAN 77, you can achieve the same results if you make
the assignments in a common block and then include the block in main().
You can also use a block data subroutine to access this information.

Displaying Thread Objects

On HP Alpha Tru64 UNIX and IBM AIX systems, TotalView can display infor-
mation about mutexes and conditional variables. In addition, TotalView can
display information on read/write locks and data keys on IBM AIX. You can
obtain this information by selecting the Tools > Thread Objects command.
After selecting this command, TotalView displays a window that contains
either two tabs (HP Alpha) or four tabs (IBM). Figure 212 on page 332
shows AIX examples.

Diving on any line in these windows displays a Variable Window that con-
tains additional information about the item.

Here are some things you should know:

If you’re displaying data keys, many applications initially set keys to 0
(the NULL pointer value). TotalView doesn’t display a key’s information,
however, until a thread sets a non-NULL value to the key.

Scoping and Symbol Names

332 Chapter 14: Examining and Changing Data

If you select a thread ID in a data key window, you can dive on it using
the View > Dive Thread and View > Dive Thread in New Window com-
mands to display a Process Window for that thread ID.

The online Help contains information on the contents of these windows.

Scoping and Symbol Names

TotalView assigns a unique name to every element in your program based
on the scope in which the element exists. A scope defines the part of a pro-
gram that knows about a symbol. For example, the scope of a variable that
is defined at the beginning of a subroutine is all the statements in the sub-

Figure 212: Thread
Objects Page on
an IBM AIX
Computer

Scoping and Symbol Names

TotalView Users Guide: version 8.8 333

routine. The variable’s scope does not extend outside of this subroutine. A
program consists of multiple scopes. Of course, a block contained in the
subroutine could have its own definition of the same variable. This would
hide the definition in the enclosing scope.

All scopes are defined by your program’s structure. Except for the simplest
of programs, scopes are embedded in other scopes. The only exception is
the outermost scope, which is the one that contains main(), which is not
embedded. Every element in a program is associated with a scope.

To see the scope in which a variable is valid, click the More button in the
Variable Window until the scope fields are visible. The Variable Window now
includes additional information about your variable, as is shown in
Figure 213 on page 333.

The Valid in Scope list indicates the scope in which the variable resides.
That is, when this scope is active, the variable is defined. The Compiled in
Scope list can differ if you modify the variable with an expression. It indi-
cates where variables in this expression have meaning.

When you tell the CLI or the GUI to execute a command, TotalView consults
the program’s symbol table to discover which object you are referring to—
this process is known as symbol lookup. Symbol lookup is performed with
respect to a particular context, and each context uniquely identifies the
scope to which a symbol name refers.

For additional information, see “Scoping Issues” on page 291.

Qualifying Symbol Names

The way you describe a scope is similar to the way you specify a file. The
scopes in a program form a tree, with the outermost scope (which is your

Figure 213: Variable Window:
Showing Variable
Properties

Scoping and Symbol Names

334 Chapter 14: Examining and Changing Data

program) as the root. At the next level are executable files and dynamic
libraries; further down are compilation units (source files), procedures,
modules, and other scoping units (for example, blocks) supported by the
programming language. Qualifying a symbol is equivalent to describing the
path to a file in UNIX file systems.

A symbol is fully scoped when you name all levels of its tree. The following
example shows how to scope a symbol and also indicates parts that are
optional:

[#executable-or-lib#][file#][procedure-or-line#]symbol

The pound sign (#) separates elements of the fully qualified name.

Because of the number of different types of elements that can appear in your program, a
complete description of what can appear and their possible order is complicated and
unreadable. In contrast, after you see a name in the Stack Frame Pane, it is easy to
read a variable’s scoped name.

TotalView interprets most programs and components as follows:

You do not need to qualify file names with a full path, and you do not
need to use all levels in a symbol’s scoping tree. TotalView conventions
here are similar to the way UNIX displays file names.
If a qualified symbol begins with #, the name that follows indicates the
name of the executable or shared library (just as an absolute file path be-
gins with a directory immediately in the root directory). If you omit the ex-
ecutable or library component, the qualified symbol doesn’t begin with #.
The source file’s name can appear after the possibly omitted executable
or shared library.
Because programming languages typically do not let you name blocks,
that portion of the qualifier is specified using the symbols $b followed by
a number that indicates which block. For example, the first unnamed
block is named $b1, the second is $b2, and so on.

You can omit any part of the scope specification that TotalView doesn’t
need to uniquely identify the symbol. Thus, foo#x identifies the symbol x in
the procedure foo. In contrast, #foo#x identifies either procedure x in exe-
cutable foo or variable x in a scope from that executable.

Similarly, #foo#bar#x could identify variable x in procedure bar in execut-
able foo. If bar were not unique in that executable, the name would be
ambiguous unless you further qualified it by providing a file name. Ambigu-
ities can also occur if a file-level variable (common in C programs) has the
same name as variables declared in functions in that file. For instance,
bar.c#x refers to a file-level variable, but the name can be ambiguous when
there are different definitions of x embedded in functions that occur in the
same file. In this case, you need to enter bar.c#b1#x to identify the scope
that corresponds to the outer level of the file (that is, the scope that con-
tains line 1 of the file).

TotalView Users Guide: version 8.8 335

c
h
a
p
t
e
r

Examining Arrays

15

This chapter explains how to examine and change array data as you
debug your program. Since arrays also appear in the Variable Win-
dow, you need to be familiar with the information in Chapter 14,
“Examining and Changing Data,” on page 281.

The topics in this chapter are:

“Examining and Analyzing Arrays” on page 335
“Displaying a Variable in all Processes or Threads” on page 347
“Visualizing Array Data” on page 349

Examining and Analyzing Arrays

Variable Window

TotalView can quickly display very large arrays in Variable Windows. An array
can be the elements that you define in your program, or it can be an area
of memory that you cast into an array.

If an array extends beyond the memory section in which it resides, the ini-
tial portion of the array is formatted correctly. If memory isn’t allocated for
an array element, TotalView displays Bad Address in the element’s sub-
script.

Topics in this section are:

“Displaying Array Slices” on page 336
“Filtering Array Data Overview” on page 339
“Sorting Array Data” on page 344
“Obtaining Array Statistics” on page 345

Examining and Analyzing Arrays

336 Chapter 15: Examining Arrays

Displaying Array Slices

Filtering Array Data Overview

Sorting Array Data

Obtaining Array Statistics

TotalView lets you display array subsections by editing the Slice field in an
array’s Variable Window. (An array subsection is called a slice.) The Slice field
contains placeholders for all array dimensions. For example, the following
is a C declaration for a three-dimensional array:

integer an_array[10][20][5]

Because this is a three-dimensional array, the initial slice definition is
[:][:][:]. This lets you know that the array has three dimensions and that
TotalView is displaying all array elements.

The following is a deferred shape array definition for a two-dimensional
array variable:

integer, dimension (:,:) :: another_array

The TotalView slice definition is (:,:).

TotalView displays as many colons (:) as there are array dimensions. For
example, the slice definition for a one-dimensional array (a vector) is [:] for
C arrays and (:) for Fortran arrays.

Using Slices and Strides
Displaying Array Slices

Using Slices in the Lookup Variable Command

A slice has the following form:

lower_bound:upper_bound[:stride]

The stride, which is optional, tells TotalView to skip over elements and not
display them. Adding a stride to a slice tells the debugger to display every
stride element of the array, starting at the lower_bound and continuing through
the upper_bound, inclusive.

For example, a slice of [0:9:9] used on a ten-element C array tells TotalView
to display the first element and last element, which is the ninth element
beyond the lower bound.

If the stride is negative and the lower bound is greater than the upper
bound, TotalView displays a dimension with its indices reversed. That is,
TotalView treats the slice as if it was defined as follows:

[upperbound : lowerbound : stride]

CLI: dprint -slice “\[n:m\]” an_array
dprint -slice “(n:m,p:q)” an_array

CLI: dprint an_array(n:m:p,q:r:s)

Examining and Analyzing Arrays

TotalView Users Guide: version 8.8 337

For example, the following definition tells TotalView to display an array
beginning at its last value and moving to its first:

[::-1]

This syntax differs from Fortran 90 syntax in that Fortran 90 requires that
you explicitly enter the upper and lower bounds when you’re reversing the
order for displaying array elements.

Because the default value for the stride is 1, you can omit the stride (and
the colon that precedes it) from your definition. For example, the following
two definitions display array elements 0 through 9:

[0:9:1]
[0:9]

If the lower and upper bounds are the same, just use a single number. For
example, the following two definitions tell TotalView to display array ele-
ment 9:

[9:9:1]
[9]

The lower_bound, upper_bound, and stride must be constants. They cannot be expres-
sions.

Example 1 A slice declaration of [::2] for a C or C++ array (with a default lower bound
of 0) tells TotalView to display elements with even indices of the array; that
is, 0, 2, 4, and so on. However, if this were defined for a Fortran array
(where the default lower bound is 1), TotalView displays elements with odd
indices of the array; that is, 1, 3, 5, and so on.

Example 2 The following figure displays a stride of (::9,::9). This definition displays the
four corners of a ten-element by ten-element Fortran array.

Example 3 You can use a stride to invert the order and skip elements. For example, the
following slice begins with the upper bound of the array and displays every
other element until it reaches the lower bound of the array:

(::–2)

Using (::–2) with a Fortran integer(10) array tells TotalView to display the
elements 10, 8, 6, 4, and 2.

Figure 214: Stride Displaying
the Four Corners of an
Array

Examining and Analyzing Arrays

338 Chapter 15: Examining Arrays

Example 4 You can simultaneously invert the array’s order and limit its extent to dis-
play a small section of a large array. The following figure shows how to
specify a (2:3,7::–1) slice with an integer*4(–1:5,2:10) Fortran array. (See
Figure 215.)

After you enter this slice value, TotalView only shows elements in rows 2
and 3 of the array, beginning with column 10 and ending with column 7.

Using Slices in the Lookup Variable Command
Displaying Array Slices

Using Slices and Strides

When you use the View > Lookup Variable command to display a Variable
Window, you can include a slice expression as part of the variable name.
Specifically, if you type an array name followed by a set of slice descriptions
in the View > Lookup Variable command dialog box, TotalView initializes
the Slice field in the Variable Window to this slice description.

If you add subscripts to an array name in the View > Lookup Variable dia-
log box, TotalView will look up just that array element.

You can, of course, type an expression into the View > Lookup Variable
dialog box; for example, you could type small_array(i-1,j-1).

Array Slices and Array Sections

An array slice allows you to see a part of an array. The slice allows you to
remove parts of the array you do not want to see. For example, if you have
a 10,000 element array, you could tell TotalView that it should only display
100 of these elements. Fortran has introduced the concept of an array sec-
tion. When you create an array section, you are creating a new array that is
a subset of the old array. Because it is a new array, its first array index is 1.

Figure 215: Fortran Array
with Inverse Order and
Limited Extent

CLI: dprint small_array(5,5)

Examining and Analyzing Arrays

TotalView Users Guide: version 8.8 339

In the following figureFigure 216 on page 339, the top left Variable Window
displays an eleven-element array slice. The bottom right Variable Window
displays an eleven-element array.

While the data in both is identical, notice that the array numbering is differ-
ent. In addition, the array slice shows an address for the array. The section,
however, only exists within TotalView. Consequently, there is no address
associated with it.

Filtering Array Data Overview

Displaying Array Slices

Sorting Array Data

Obtaining Array Statistics

You can restrict what TotalView displays in a Variable Window by adding a
filter to the window. You can filter arrays of type character, integer, or float-
ing point. Your filtering options are:

Arithmetic comparison to a constant value
Equal or not equal comparison to IEEE NaNs, Infs, and Denorms
Within a range of values, inclusive or exclusive
General expressions

When an element of an array matches the filter expression, TotalView
includes the element in the Variable Window display.

Figure 216: An Array Slice
and an Array Section

Examining and Analyzing Arrays

340 Chapter 15: Examining Arrays

The following topics describe filtering options:

“Filtering Array Data” on page 340
“Filtering by Comparison” on page 340
“Filtering for IEEE Values” on page 341
“Filtering a Range of Values” on page 343
“Creating Array Filter Expressions” on page 343
“Using Filter Comparisons” on page 344

Filtering Array Data: The procedure for filtering an array is simple:
select the Filter field, enter the array filter expression, and then press Enter.

TotalView updates the Variable Window to exclude elements that do not
match the filter expression. TotalView only displays an element if its value
matches the filter expression and the slice operation.

If necessary, TotalView converts the array element before evaluating the fil-
ter expression. The following conversion rules apply:

If the filter operand or array element type is floating point, TotalView con-
verts the operand to a double-precision floating-point value. TotalView
truncates extended-precision values to double precision. Converting inte-
ger or unsigned integer values to double-precision values might result in a
loss of precision. TotalView converts unsigned integer values to nonnega-
tive double-precision values.
If the filter operand or the array element is an unsigned integer, TotalView
converts the operand to an unsigned 64-bit integer.
If both the filter operand and array element are of type integer, TotalView
converts the values to type 64-bit integer.

TotalView conversion operations modify a copy of the array’s elements—
conversions never alter the actual array elements.

To stop filtering an array, delete the contents of the Filter field in the Vari-
able Window and press Enter. TotalView then updates the Variable Window
so that it includes all elements.

Filtering by Comparison
The simplest filters are ones whose formats are as follows:

operator value

where operator is either a C/C++ or Fortran-style comparison operator, and
value is a signed or unsigned integer constant or a floating-point number.
For example, the filter for displaying all values greater than 100 is:

> 100

The following table lists the comparison operators:

Comparison C/C++ Operator Fortran Operator
Equal == .eq.
Not equal != .ne.
Less than < .lt.
Less than or equal <= .le.

Examining and Analyzing Arrays

TotalView Users Guide: version 8.8 341

The following figure shows an array whose filter is < 0. This tells TotalView
to only display array elements whose value is less than 0 (zero). See
Figure 217 on page 341.

If the value you’re using in the comparison is an integer constant, TotalView
performs a signed comparison. If you add the letter u or U to the constant,
TotalView performs an unsigned comparison.

Filtering for IEEE Values
You can filter IEEE NaN, Infinity, or denormalized floating-point values by
specifying a filter in the following form:

operator ieee-tag

The only comparison operators you can use are equal and not equal.

The ieee-tag represents an encoding of IEEE floating-point values, as the fol-
lowing table describes:

Figure 218 on page 342The following figure shows an example of filtering
an array for IEEE values. The bottom window in this figure shows how

Greater than > .gt.
Greater than or equal >= .ge.

Comparison C/C++ Operator Fortran Operator

Figure 217: Array Data
Filtering by Comparison

IEEE Tag Value Meaning
$nan NaN (Not a number), either quiet or signaling
$nanq Quiet NaN
$nans Signaling NaN
$inf Infinity, either positive or negative
$pinf Positive Infinity
$ninf Negative Infinity
$denorm Denormalized number, either positive or negative
$pdenorm Positive denormalized number
$ndenorm Negative denormalized number

Examining and Analyzing Arrays

342 Chapter 15: Examining Arrays

TotalView displays the unfiltered array. Notice the NaNQ, and NaNS, INF,
and –INF values. The other two windows show filtered displays: the top
window shows only infinite values; the remaining window only shows the
values of denormalized numbers.

If you are writing an expression, you can use the following Boolean func-
tions to check for a particular type of value:

Figure 218: Array Data
Filtering for IEEE Values

IEEE Intrinsic Meaning
$is_denorm(value) Is a denormalized number, either positive or negative
$is_finite(value) Is finite
$is_inf(value) Is Infinity, either positive or negative
$is_nan(value) Is a NaN (Not a number), either quiet or signaling
$is_ndenorm(value) Is a negative denormalized number
$is_ninf(value) Is negative Infinity
$is_nnorm(value) Is a negative normalized number
$is_norm(value) Is a normalized number, either positive or negative
$is_nzero(value) Is negative zero
$is_pdenorm(value) Is a positive denormalized number
$is_pinf(value) Is positive Infinity
$is_pnorm(value) Is a positive normalized number

Examining and Analyzing Arrays

TotalView Users Guide: version 8.8 343

Filtering a Range of Values
You can also filter array values by specifying a range, as follows:

[>] low-value : [<] high-value

where low-value specifies the lowest value to include, and high-value specifies
the highest value to include, separated by a colon. The high and low values
are inclusive unless you use less-than (<) and greater-than (>) symbols. If
you specify a > before low-value, the low value is exclusive. Similarly, a <
before high-value makes it exclusive.

The values of low-value and high-value must be constants of type integer,
unsigned integer, or floating point. The data type of low-value must be the
same as the type of high-value, and low-value must be less than high-value. If
low-value and high-value are integer constants, you can append the letter u
or U to the value to force an unsigned comparison. The following figure
shows a filter that tells TotalView to only display values greater than 63, but
less than 512. (See Figure 219.)

Creating Array Filter Expressions
The filtering capabilities described in the previous sections are those that
you use most often. In some circumstances, you may need to create a
more general expression. When you create a filter expression, you’re creat-
ing a Fortran or C Boolean expression that TotalView evaluates for every
element in the array or the array slice. For example, the following expres-
sion displays all array elements whose contents are greater than 0 and less
than 50, or greater than 100 and less than 150:

$is_pzero(value) Is positive zero
$is_qnan(value) Is a quiet NaN
$is_snan(value) Is a signaling NaN
$is_zero(value) Is zero, either positive or negative

IEEE Intrinsic Meaning

Figure 219: Array Data
Filtering by Range of
Values

Examining and Analyzing Arrays

344 Chapter 15: Examining Arrays

($value > 0 && $value < 50) ||
($value > 100 && $value < 150)

Here’s the Fortran equivalent:

($value .gt. 0 && $value .lt. 50) .or.
($value .gt. 100 .and. $value .lt.150)

The $value variable is a special TotalView variable that represents the current
array element. You can use this value when creating expressions.

Notice how the and and or operators are used in these expressions. The
way in which TotalView computes the results of an expression is identical
to the way it computes values at an eval point. For more information, see
“Defining Eval Points and Conditional Breakpoints” on page 368.

Using Filter Comparisons
TotalView provides several different ways to filter array information. For
example, the following two filters display the same array items:

> 100
$value > 100

The following filters display the same array items:

>0:<100
$value > 0 && $value < 100

The only difference is that the first method is easier to type than the sec-
ond, so you’re more likely to use the second method when you’re creating
more complicated expressions.

Sorting Array Data

Displaying Array Slices

Filtering Array Data Overview

Obtaining Array Statistics

TotalView lets you sort the displayed array data into ascending or descend-
ing order. (It does not sort the actual data.) To sort (or remove the sort),
click the Value label.

The first time you click, TotalView sorts the array’s values into ascending
order.
The next time you click on the header, TotalView reverses the order, sorting
the array’s values into descending order.
If you click again on the header, TotalView returns the array to its unsorted
order.

Here is an example that sorts an array into descending order:

When you sort an array’s values, you are just rearranging the information
that’s displayed in the Variable Window. Sorting does not change the order
in which values are stored in memory. If you alter what TotalView is display-
ing by using a filter or a slice, TotalView just sorts the values that could be
displayed; it doesn’t sort all of the array.

Examining and Analyzing Arrays

TotalView Users Guide: version 8.8 345

If you are displaying the array created by a Show across command—see
“Displaying a Variable in all Processes or Threads” on page 347 for more informa-
tion—you can sort your information by process or thread.

Obtaining Array Statistics

Displaying Array Slices

Filtering Array Data Overview

Sorting Array Data

The Tools > Statistics command displays a window that contains informa-
tion about your array. Figure 221The following figure shows an example.

If you have added a filter or a slice, these statistics describe only the infor-
mation currently being displayed; they do not describe the entire unfiltered

Figure 220: Sorted Variable
Window

Figure 221: Array Statistics
Window

Examining and Analyzing Arrays

346 Chapter 15: Examining Arrays

array. For example, if 90% of an array’s values are less than 0 and you filter
the array to show only values greater than 0, the median value is positive
even though the array’s real median value is less than 0.

TotalView displays the following statistics:

Checksum
A checksum value for the array elements.
Count
The total number of displayed array values. If you’re displaying a floating-
point array, this number doesn’t include NaN or Infinity values.
Denormalized Count
A count of the number of denormalized values found in a floating-point
array. This includes both negative and positive denormalized values as
defined in the IEEE floating-point standard. Unlike other floating-point
statistics, these elements participate in the statistical calculations.
Infinity Count
A count of the number of infinity values found in a floating-point array.
This includes both negative and positive infinity as defined in the IEEE
floating-point standard. These elements don’t participate in statistical
calculations.
Lower Adjacent
This value provides an estimate of the lower limit of the distribution. Val-
ues below this limit are called outliers. The lower adjacent value is the first
quartile value minus the value of 1.5 times the difference between the first
and third quartiles.
Maximum
The largest array value.
Mean
The average value of array elements.
Median
The middle value. Half of the array’s values are less than the median, and
half are greater than the median.
Minimum
The smallest array value.
NaN Count
A count of the number of NaN (not a number) values found in a floating-
point array. This includes both signaling and quiet NaNs as defined in the
IEEE floating-point standard. These elements don’t participate in statis-
tical calculations.
Quartiles, First and Third
Either the 25th or 75th percentile values. The first quartile value means
that 25% of the array’s values are less than this value and 75% are greater
than this value. In contrast, the third quartile value means that 75% of the
array’s values are less than this value and 25% are greater.
Standard Deviation
The standard deviation for the array’s values.
Sum

Displaying a Variable in all Processes or Threads

TotalView Users Guide: version 8.8 347

The sum of all the displayed array’s values.
Upper Adjacent
This value provides an estimate of the upper limit of the distribution. Val-
ues above this limit are called outliers. The upper adjacent value is the third
quartile value plus the value of 1.5 times the difference between the first
and third quartiles.
Zero Count
The number of elements whose value is 0.

Displaying a Variable in all Processes
or Threads

Displaying an Array of Structure’s Elements

When you’re debugging a parallel program that is running many instances
of the same executable, you usually need to view or update the value of a
variable in all of the processes or threads at once.

Before displaying a variable’s value in all threads or processes, you must
display an instance of the variable in a Variable Window. After TotalView dis-
plays this window, use one of the following commands:

View > Show Across > Process, displays the value of the variable in all
processes.
View > Show Across > Thread, displays the value of a variable in all
threads within a single process.
View > Show Across > None, returns the window to what it was before
you used other Show Across commands.

You cannot simultaneously Show Across processes and threads in the same Variable
Window.

After using one of these commands, the Variable Window switches to an
array-like display of information, and displays the value of the variable in
each process or thread. The following figureFigure 222 shows a simple, sca-
lar variable in each of the processes in an OpenMP program.

When looking for a matching stack frame, TotalView matches frames start-
ing from the top frame, and considers calls from different memory or stack
locations to be different calls. For example, the following definition of
recurse() contains two additional calls to recurse(). Each of these calls gen-
erates a nonmatching call frame.

void recurse(int i) {
if (i <= 0)

return;
if (i & 1)

Displaying a Variable in all Processes or Threads

348 Chapter 15: Examining Arrays

recurse(i – 1);
else

recurse(i – 1);
}

If the variables are at different addresses in the different processes or
threads, the field to the left of the Address field displays Multiple, and the
unique addresses appear with each data item.

TotalView also lets you Show Across arrays and structures. When you Show
Across an array, TotalView displays each element in the array across all pro-
cesses. You can use a slice to select elements to be displayed in an “across”
display. The following figure shows the result of applying a Show Across >
Processes command to an array of structures. (See Figure 223.)

Diving on a “Show Across” Pointer

Displaying a Variable in all Processes or Threads

You can dive through pointers in a Show Across display. This dive applies to
the associated pointer in each process or thread.

Figure 222: Viewing Across
Threads

Figure 223: Viewing across an
Array of Structures

Visualizing Array Data

TotalView Users Guide: version 8.8 349

Editing a “Show Across” Variable

If you edit a value in a “Show Across” display, TotalView asks if it should
apply this change to all processes or threads or only the one in which you
made a change. This is an easy way to update a variable in all processes.

Visualizing Array Data

Visualizing Array Data

The Visualizer lets you create graphical images of array data. This presenta-
tion lets you see your data in one glance and can help you quickly find
problems with your data while you are debugging your programs.

You can execute the Visualizer from within TotalView, or you can run it from
the command line to visualize data dumped to a file in a previous TotalView
session.

For information about running the Visualizer, see Chapter 9, “Visualizing Pro-
grams and Data,” on page 183.

Visualizing a “Show Across” Variable Window

You can export data created by using a Show Across command to the Visual-
izer by using the Tools > Visualize command. When visualizing this kind of
data, the process (or thread) index is the first axis of the visualization. This
means that you must use one less data dimension than you normally
would. If you do not want the process/thread axis to be significant, you can
use a normal Variable Window, since all of the data must be in one process.

Visualizing Array Data

350 Chapter 15: Examining Arrays

TotalView Users Guide:version 8.8 351

c
h
a
p
t
e
r

Setting
Action Points

16

This chapter explains how to use action points. TotalView has four
kinds of action points:

A breakpoint stops execution of processes and threads that reach it.
A barrier point synchronizes a set of threads or processes at a location.
An eval point causes a code fragment to execute when it is reached.
A watchpoint lets you monitor a location in memory and stop execution
when it changes.

This chapter contains the following sections:

“About Action Points” on page 351
“Setting Breakpoints and Barriers” on page 353
“Defining Eval Points and Conditional Breakpoints” on page 368
“Using Watchpoints” on page 375
“Saving Action Points to a File” on page 382

About Action Points

Actions points lets you specify an action for TotalView to perform when a
thread or process reaches a source line or machine instruction in your pro-
gram.The different kinds of action points that you can use are shown in
Figure 224 on page 352.

Breakpoints
When a thread encounters a breakpoint, it stops at the breakpoint. Other
threads in the process also stop. You can indicate that you want other
related processes to stop, as well. Breakpoints are the simplest kind of
action point.

About Action Points

352 Chapter 16: Setting Action Points

Barrier points
Barrier points are similar to simple breakpoints, differing in that you use
them to synchronize a group of processes or threads. A barrier point
holds each thread or process that reaches it until all threads or processes
reach it. Barrier points work together with the TotalView hold-and-release
feature. TotalView supports thread barrier and process barrier points.
Eval points
An eval point is a breakpoint that has a code fragment associated with it.
When a thread or process encounters an eval point, it executes this code.
You can use eval points in a variety of ways, including conditional break-
points, thread-specific breakpoints, countdown breakpoints, and patch-
ing code fragments into and out of your program.
Watchpoints
A watchpoint tells TotalView to either stop the thread so that you can
interact with your program (unconditional watchpoint), or evaluate an
expression (conditional watchpoint).

All action points share the following common properties.

You can independently enable or disable action points. A disabled action
isn’t deleted; however, when your program reaches a disabled action
point, TotalView ignores it.
You can share action points across multiple processes or set them in in-
dividual processes.
Action points apply to the process. In a multi-threaded process, the ac-
tion point applies to all of the threads contained in the process.
TotalView assigns unique ID numbers to each action point. These IDs ap-
pear in several places, including the Root Window, the Action Points Tab
of the Process Window, and the Action Point > Properties Dialog Box.

The following figure shows the symbol that TotalView displays for an action
point:.

CLI: dactions shows information about action points.

Figure 224: Action Point
Symbols

Assembler-level action point
Breakpoint
Disabled breakpoint
Barrier breakpoint
Disabled barrier breakpoint
Eval point
Disabled eval point

Setting Breakpoints and Barriers

TotalView Users Guide: version 8.8 353

The icon is what TotalView displays when you create a breakpoint
on an assembler statement.

When your program halts because it encountered an action point,
TotalView lets you know what has happened in several ways. In the Root
Window, the status is displayed with the letter “b” followed by a number.
This is the same number that you will see in the Action Points tab within
the Process Window. In the Process Window, the status lines above the
Source Pane also let you know that the thread is at a breakpoint. Finally,
TotalView places a yellow arrow over the action point’s icon in the Action
Point tab. For example:

If you are working with templated code, you will see an ellipsis (...) after the
address, indicating that there are additional addresses associated with the
breakpoint.

Setting Breakpoints and Barriers

TotalView has several options for setting breakpoints. You can set:

Source-level breakpoints
Breakpoints that are shared among all processes in multi-process pro-
grams
Assembler-level breakpoints

You can also control whether TotalView stops all processes in the control
group when a single member reaches a breakpoint.

Topics in this section are:

“Setting Source-Level Breakpoints” on page 354
“Setting Breakpoints at Locations” on page 355
“Displaying and Controlling Action Points” on page 357

CLI: All action points display as “@” when you use the dlist command to
display your source code. Use the dactions command to see what
type of action point is set.

Figure 225: Action Point Tab

Setting Breakpoints and Barriers

354 Chapter 16: Setting Action Points

“Setting Machine-Level Breakpoints” on page 360
“Setting Breakpoints for Multiple Processes” on page 361
“Setting Breakpoints When Using the fork()/execve() Functions” on page 363
“Setting Barrier Points” on page 364

Setting Source-Level Breakpoints

Typically, you set and clear breakpoints before you start a process. To set a
source-level breakpoint, select a boxed line number in the Process Window.
(A boxed line number indicates that the line is associated with executable
code.) A icon lets you know that a breakpoint is set immediately
before the source statement.

You can also set a breakpoint while a process is running by selecting a
boxed line number in the Process Window.

Choosing Source Lines
If you’re using C++ templates, TotalView sets a breakpoint in all instantia-
tions of that template. If this isn’t what you want, clear the button and then
select the Addresses button in the Action Point Properties Dialog Box. You
can now clear locations where the action point shouldn’t be set. (See
Figure 226.)

CLI: @ next to the line number

CLI: Use dbreak whenever the CLI displays a prompt.

Figure 226: Setting
Breakpoints on Multiple
Similar Addresses

Setting Breakpoints and Barriers

TotalView Users Guide: version 8.8 355

Similarly, in a multi-process program, you might not want to set the break-
point in all processes. If this is the case, select the Process button. (See
Figure 227.)

Setting Breakpoints at Locations

You can set or delete a breakpoint at a specific function or source-line
number without having to first find the function or source line in the
Source Pane. Do this by entering a line number or function name in the
Action Point > At Location Dialog Box. (Figure 228.)

Figure 227: Setting
Breakpoints on Multiple
Similar Addresses and
on Processes

Figure 228: Action Point >
At Location Dialog Box

Setting Breakpoints and Barriers

356 Chapter 16: Setting Action Points

When you’re done, TotalView sets a breakpoint at the location. If you enter a
function name, TotalView sets the breakpoint at the function’s first execut-
able line. In either case, if a breakpoint already exists at a location, TotalView
deletes it.

For detailed information about the kinds of information you can enter in
this dialog box, see dbreak in the TotalView Reference Guide.

Ambiguous Functions and Pending Breakpoints
If you type a function name that TotalView has no information about into
the Action Point > At Location dialog box, it assumes that you have either
mistyped the function name or that the library containing the function has
not yet been loaded into memory.

If TotalView cannot find a location to set a breakpoint (or a barrier point),
you can tell it to set it anyway because it could exist in a shared library or it
could be loaded later. These kind of breakpoints are called pending break-
points. When libraries are loaded, TotalView checks for the function’s name.
If the name is found, it sets the breakpoint. If it isn’t in a newly loaded
library, TotalView just keeps on waiting for it to be loaded. You’ll see infor-
mation in the Action Points tab that tells you that the breakpoint is pend-
ing.

If the name you type is similar to the name of an existing function,
TotalView displays its Ambiguous Function dialog box that lets you select
which of these existing functions it should set a breakpoint on. If, however,
the function will be loaded into memory later, you can set a pending break-
point (See Figure 230 on page 357.).

If the name you entered was not ambiguous, TotalView just asks if it should
set a pending breakpoint. This question box is also shown in Figure 230 on
page 357.

TotalView can only place one action point on an address. Because the breakpoints you
specify are actually expressions, the locations to which these expressions evaluate can
overlap or even be the same. Sometimes, and this most often occurs with pending break-
points in dynamically loaded libraries, TotalView cannot tell when action points over-

CLI: dbreak sets a breakpoint
ddelete deletes a breakpoint

Figure 229: Pending
Breakpoints

Setting Breakpoints and Barriers

TotalView Users Guide: version 8.8 357

lap. If they do, TotalView only enables one of the action points and disables all others
that evaluate to the same address. The actionpoint that TotalView enables is the one
with the lowest actionpoint ID.

Displaying and Controlling Action Points

The Action Point > Properties Dialog Box lets you set and control an action
point. Controls in this dialog box also lets you change an action point’s
type to breakpoint, barrier point, or eval point. You can also define what
happens to other threads and processes when execution reaches this
action point. (See Figure 231.)

Figure 230: Ambiguous
Function Dialog Box

Figure 231: Action Point >
Properties Dialog Box

Setting Breakpoints and Barriers

358 Chapter 16: Setting Action Points

The following sections explain how you can control action points by using
the Process Window and the Action Point > Properties Dialog Box.

Disabling Action Points
TotalView can retain an action point’s definition and ignore it while your
program is executing. That is, disabling an action point deactivates it with-
out removing it.

You can disable an action point by:

Clearing Enable action point in the Action Point > Properties Dialog Box.
Selecting the or symbol in the Action Points Tab.
Using the context (right-click) menu.
Clicking on the Action Points > Disable command.

Deleting Action Points
You can permanently remove an action point by selecting the or

 symbol or selecting the Delete button in the Action Point >
Properties Dialog Box.

To delete all breakpoints and barrier points, use the Action Point > Delete
All command.

If you make a significant change to the action point, TotalView disables it
rather than delete it when you click the symbol.

Enabling Action Points
You can activate a previously disabled action point by selecting a dimmed

, , or symbol in the Source or Action Points tab, or by
selecting Enable action point in the Action Point > Properties Dialog Box.

Suppressing Action Points
You can tell TotalView to ignore action points by using the Action Point >
Suppress All command.

CLI: dset SHARE_ACTION_POINT
dset STOP_ALL
ddisable action-point

CLI: ddisable action-point

CLI: ddelete

CLI: denable

CLI: ddisable –a

Setting Breakpoints and Barriers

TotalView Users Guide: version 8.8 359

When you suppress action points, you disable them.After you suppress an
action point, TotalView changes the symbol it uses within the Source Panes
line number area. In all cases, the icon’s color will be lighter. If you have
suppressed action points, you cannot update existing action points or cre-
ate new ones.

You can make previously suppressed action points active and allow the cre-
ation of new ones by reselecting the Action Point > Suppress All command.

Setting Breakpoints on Classes and Virtual and
Overloaded Functions

The Action Point > At Location dialog box lets you set breakpoints on all
functions within a class or on a virtual function. The All Methods in Class
and All Virtual Functions and Overrides check boxes tell TotalView that it
should set multiple breakpoints. Each place that TotalView sets a break-
point will have its own breakpoint icon. For example, if there are ten class
functions, each will have its own unique breakpoint.

TotalView tells you that the action point is set on a virtual function or a class
in the Action Points tab. If you dive on the action point in this tab, TotalView
brings up its Ambiguous Function dialog box so that you can select which it
should display. You may want to select the Show full path names check box
if you can’t tell which you want from the function’s signature.

If a function name is overloaded, the debugger sets a breakpoint on each
of these functions.

If you only want breakpoints on some functions, you will need to select the
breakpoint and then get to the Properties Window. Do this either by right-
clicking on the breakpoint and press Properties or by selecting the Action
Point > Properties command, and then press Addresses. (See Figure 233 on
page 360.)

You can now individually add or remove breakpoints.

CLI: denable –a

Figure 232: Action Point >
At Location Dialog Box

Setting Breakpoints and Barriers

360 Chapter 16: Setting Action Points

Setting Machine-Level Breakpoints

To set a machine-level breakpoint, you must first display assembler code.
(For information, see “Viewing the Assembler Version of Your Code” on page 175.)
You can now select an instruction. TotalView replaces some line numbers
with a dotted box ()—this indicates the line is the beginning of a machine
instruction. If a line has a line number, this is the line number that appears
in the Source Pane. Since instruction sets on some platforms support vari-
able-length instructions, you might see a different number of lines associ-
ated with a single line contained in the dotted box. The icon appears,
indicating that the breakpoint occurs before the instruction executes.

If you set a breakpoint on the first instruction after a source statement,
however, TotalView assumes that you are creating a source-level break-
point, not an assembler-level breakpoint.

Figure 233: Action Point >
Properties: Selecting

Figure 234: Breakpoint at
Assembler Instruction

Setting Breakpoints and Barriers

TotalView Users Guide: version 8.8 361

If you set machine-level breakpoints on one or more instructions gener-
ated from a single source line, and then display source code in the Source
Pane, TotalView displays an icon (see Figure 224 on page 352) on the
line number. To see the actual breakpoint, you must redisplay assembler
instructions.

When a process reaches a breakpoint, TotalView does the following:

Suspends the process.
Displays the PC arrow icon () over the stop sign to indicate that the
PC is at the breakpoint.

Displays At Breakpoint in the Process Window title bar and other win-
dows.
Updates the Stack Trace and Stack Frame Panes and all Variable Win-
dows.

Setting Breakpoints for Multiple Processes

In all programs, including multi-process programs, you can set breakpoints
in parent and child processes before you start the program and while the
program is executing. Do this using the Action Point > Properties Dialog Box.
(See Figure 236.)

Figure 235: PC Arrow Over a
Stop Icon

Figure 236: Action Point >
Properties Dialog Box

Setting Breakpoints and Barriers

362 Chapter 16: Setting Action Points

This dialog box provides the following controls for setting breakpoints:

When Hit, Stop
When your thread hits a breakpoint, TotalView can also stop the thread’s
control group or the process in which it is running.

Plant in share group
If you select this check box, TotalView enables the breakpoint in all mem-
bers of this thread’s share group at the same time. If not, you must indi-
vidually enable and disable breakpoints in each member of the share
group.

The Processes button lets you indicate which process in a multi-process
program will have enabled breakpoints. If Plant in share group is selected,
TotalView does not enable this button because you told TotalView to set
the breakpoint in all of the processes.

You can preset many of the properties in this dialog box by selecting the
File > Preferences command. Use the Action Points page to set action
point preferences.

You can find additional information about this dialog box in the online Help.

If you select the Evaluate button in the Action Point > Properties Dialog
Box, you can add an expression to the action point. This expression is

CLI: dset STOP_ALL
dbreak –p | –g | –t

CLI: dset SHARE_ACTION_POINT

Figure 237: File >
Preferences: Action Points
Page

Setting Breakpoints and Barriers

TotalView Users Guide: version 8.8 363

attached to control and share group members. See “Using Programming Lan-
guage Elements” on page 387 for more information.

If you’re trying to synchronize your program’s threads, you need to set a
barrier point. For more information, see “Setting Barrier Points” on page 364.

Setting Breakpoints When Using the fork()/execve()
Functions

You must link with the dbfork library before debugging programs that call
the fork() and execve() functions. See “Compiling Programs” on page 53.

Debugging Processes That Call the fork() Function
By default, TotalView places breakpoints in all processes in a share group.
(For information on share groups, see “Organizing Chaos” on page 22.) When
any process in the share group reaches a breakpoint, TotalView stops all pro-
cesses in the control group. This means that TotalView stops the control
group that contains the share group. This control can contain more than one
share group.

To override these defaults:

1 Dive into the line number to display the Action Point > Properties Dialog
Box.

2 Clear the Plant in share group check box and make sure that the Group
radio button is selected.

Debugging Processes that Call the execve() Function
Shared breakpoints are not set in children that have different executables.

To set the breakpoints for children that call the execve() function:

1 Set the breakpoints and breakpoint options in the parent and the chil-
dren that do not call the execve() function.

2 Start the multi-process program by displaying the Group > Go command.
When the first child calls the execve() function, TotalView displays the fol-
lowing message:
Process name has exec’d name.
Do you want to stop it now?

3 Answer Yes.
TotalView opens a Process Window for the process. (If you answer No, you
won’t have an opportunity to set breakpoints.)

4 Set breakpoints for the process.
After you set breakpoints for the first child using this executable,
TotalView won’t prompt when other children call the execve() function.

CLI: dset SHARE_ACTION_POINT false

CLI: G

Setting Breakpoints and Barriers

364 Chapter 16: Setting Action Points

This means that if you do not want to share breakpoints in children that
use the same executable, dive into the breakpoints and set the break-
point options.

5 Select the Group > Go command.

Example: Multi-process Breakpoint
The following program excerpt illustrates the places where you can set
breakpoints in a multi-process program:

1 pid = fork();
2 if (pid == –1)
3 error ("fork failed");
4 else if (pid == 0)
5 children_play();
6 else
7 parents_work();

The following table describes what happens when you set a breakpoint at
different places:

Setting Barrier Points

A barrier breakpoint is similar to a simple breakpoint, differing only in that
it holds processes and threads that reach the barrier point. Other pro-
cesses and threads continue to run. TotalView holds these processes or
threads until all processes or threads defined in the barrier point reach this
same place. When the last one reaches a barrier point, TotalView releases
all the held processes or threads. In this way, barrier points let you syn-
chronize your program’s execution.

Topics in this section are:

“About Barrier Breakpoint States” on page 365
“Setting a Barrier Breakpoint” on page 365
“Creating a Satisfaction Set” on page 366
“Hitting a Barrier Point” on page 367
“Releasing Processes from Barrier Points” on page 367
“Deleting a Barrier Point” on page 367
“Changing Settings and Disabling a Barrier Point” on page 367

Line Number Result
1 Stops the parent process before it forks.
2 Stops both the parent and child processes.
3 Stops the parent process if the fork() function failed.
5 Stops the child process.
7 Stops the parent process.

CLI: dbarrier

Setting Breakpoints and Barriers

TotalView Users Guide: version 8.8 365

About Barrier Breakpoint States
Processes and threads at a barrier point are held or stopped, as follows:

Held A held process or thread cannot execute until all the
processes or threads in its group are at the barrier, or
until you manually release it. The various go and step
commands from the Group, Process, and Thread menus
cannot start held processes.

Stopped When all processes in the group reach a barrier point,
TotalView automatically releases them. They remain
stopped at the barrier point until you tell them to re-
sume executing.

You can manually release held processes and threads with the Hold and
Release commands found in the Group, Process, and Thread menus. When
you manually release a process, the go and step commands become avail-
able again.

You can reuse the Hold command to again toggle the hold state of the pro-
cess or thread. See “Holding and Releasing Processes and Threads” on page 233
for more information.

When a process or a thread is held, TotalView displays an H (for a held pro-
cess) or an h (for a held thread) in the process’s or thread’s entry in the Root
Window.

Setting a Barrier Breakpoint
You can set a barrier breakpoint by using the Action Point > Set Barrier
command or from the Action Point > Properties Dialog Box. As an alterna-
tive, you can right-click on the line. From the displayed context menu, you
can select the Set Barrier command. (See Figure 238 on page 366.)

You most often use barrier points to synchronize a set of threads. When a
thread reaches a barrier, it stops, just as it does for a breakpoint. The differ-
ence is that TotalView prevents—that is, holds—each thread reaching the
barrier from responding to resume commands (for example, step, next, or go)
until all threads in the affected set arrive at the barrier. When all threads
reach the barrier, TotalView considers the barrier to be satisfied and releases
all of the threads being held there. They are just released; they are not continued.
That is, they are left stopped at the barrier. If you continue the process,
those threads also run.

If you stop a process and then continue it, the held threads, including the
ones waiting at an unsatisfied barrier, do not run. Only unheld threads run.

CLI: dfocus ... dhold
dfocus ... dunhold

Setting Breakpoints and Barriers

366 Chapter 16: Setting Action Points

The When Hit, Stop radio buttons indicate what other threads TotalView
stops when execution reaches the breakpoint, as follows:

After all processes or threads reach the barrier, TotalView releases all held
threads. Released means that these threads and processes can now run.

The When Done, Stop radio buttons tell TotalView what else it should stop,
as follows:

Creating a Satisfaction Set
For even more control over what TotalView stops, you can select a satisfac-
tion set. This setting tells TotalView which processes or threads must be held
before it can release the group. That is, the barrier is satisfied when
TotalView has held all of the indicated processes or threads. The choices
from the drop-down menu for the Satisfaction group are Control, Share,
and Workers. The default setting, Control, affects all the process controlled
by TotalView. The Share setting affects all the processes that share the
same image as the current executable where the barrier point is set. For

Figure 238: Action Point >
Properties Dialog Box

Scope What TotalView does:
Group Stops all threads in the current thread’s control group.
Process Stops all threads in the current thread’s process.
Thread Stops only this thread.

CLI: dbarrier –stop_when_hit

Scope What TotalView does:
Group Stops all threads in the current thread’s control group.
Process Stops all threads in the current thread’s process.
Thread Stops only this thread.

CLI: dbarrier –stop_when_done

Setting Breakpoints and Barriers

TotalView Users Guide: version 8.8 367

multi-threaded programs, to hold the threads at the barrier point, use the
Workers setting, which holds at the thread level. Control and Share settings
hold at the process level.

When you set a barrier point, TotalView places it in every process in the
share group.

Hitting a Barrier Point
If you run one of the processes or threads in a group and it hits a barrier
point, you see an H next to the process or thread name in the Root Window
and the word [Held] in the title bar in the main Process Window. Barrier
points are always shared.

If you create a barrier and all the process’s threads are already at that loca-
tion, TotalView won’t hold any of them. However, if you create a barrier and
all of the processes and threads are not at that location, TotalView holds
any thread that is already there.

Releasing Processes from Barrier Points
TotalView automatically releases processes and threads from a barrier
point when they hit that barrier point and all other processes or threads in
the group are already held at it.

Deleting a Barrier Point
You can delete a barrier point in the following ways:

Use the Action Point > Properties Dialog Box.
Click the icon in the line number area.

Changing Settings and Disabling a Barrier Point
Setting a barrier point at the current PC for a stopped process or thread
holds the process there. If, however, all other processes or threads affected
by the barrier point are at the same PC, TotalView doesn’t hold them.
Instead, TotalView treats the barrier point as if it was an ordinary break-
point.

TotalView releases all processes and threads that are held and which have
threads at the barrier point when you disable the barrier point. You can dis-
able the barrier point in the Action Point > Properties Dialog Box by select-
ing Enable action point at the bottom of the dialog box.

CLI: dstatus

CLI: ddelete

CLI: ddisable

Defining Eval Points and Conditional Breakpoints

368 Chapter 16: Setting Action Points

Defining Eval Points and
Conditional Breakpoints

TotalView lets you define eval points. These are action points at which you
have added a code fragment that TotalView executes. You can write the
code fragment in C, Fortran, or assembler.

Assembler support is currently available on the HP Alpha Tru64 UNIX, IBM AIX, and
SGI IRIX operating systems. You can enable or disable TotalView’s ability to compile
eval points.

When running on many AIX systems, you can speed up the performance of compiled
expressions by using the –use_aix_fast_trap command when you start TotalView. For
more information, see the TotalView Release Notes. Search for “fast trap”.

Topics in this section are:

“Setting Eval Points” on page 369
“Creating Conditional Breakpoint Examples” on page 370
“Patching Programs” on page 370
“About Interpreted and Compiled Expressions” on page 372
“Allocating Patch Space for Compiled Expressions” on page 373

You can do the following when you use eval points:

Include instructions that stop a process and its relatives. If the code
fragment can make a decision whether to stop execution, it is called a
conditional breakpoint.
Test potential fixes for your program.
Set the values of your program’s variables.
Automatically send data to the Visualizer. This can produce animated
displays of the changes in your program’s data.

You can set an eval point at any source line that generates executable code
(marked with a box surrounding a line number) or a line that contains
assembler-level instructions. This means that if you can set a breakpoint,
you can set an eval point.

At each eval point, TotalView or your program executes the code contained
in the eval point before your program executes the code on that line.
Although your program can then go on to execute this source line or
instruction, it can do the following instead:

Include a goto in C or Fortran that transfers control to a line number in
your program. This lets you test program patches.
Execute a TotalView function. These functions let you stop execution,
create barriers, and countdown breakpoints. For more information on
these statements, see “Using Built-in Variables and Statements” on page 396.

Defining Eval Points and Conditional Breakpoints

TotalView Users Guide: version 8.8 369

TotalView evaluates code fragments in the context of the target program.
This means that you can refer to program variables and branch to places in
your program.

If you call a function from an eval point and there’s a breakpoint within that function,
TotalView will stop execution at that point. Similarly, if there’s an eval point in the
function, TotalView also evaluates that eval point.

For information on what you can include in code fragments, refer to “Using
Programming Language Elements” on page 387.

Eval points only modify the processes being debugged—they do not modify
your source program or create a permanent patch in the executable. If you
save a program’s action points, however, TotalView reapplies the eval point
whenever you start a debugging session for that program. For information
about how to save your eval points, see“Saving Action Points to a File” on
page 382.

You should stop a process before setting an eval point in it. This ensures that the eval
point is set in a stable context.

Setting Eval Points

This section contains the steps you must follow to create an eval point.
These steps are as follows:

1 Display the Action Point > Properties Dialog Box. You can do this, for
example, by right-clicking a icon and selecting Properties or by
selecting a line and then invoking the command from the menu bar.

2 Select the Evaluate button at the top of the dialog box.
3 Select the button (if it isn’t already selected) for the language in which you

plan to write the fragment.
4 Type the code fragment. For information on supported C, Fortran, and

assembler language constructs, see “Using Programming Language Elements”
on page 387.

5 For multi-process programs, decide whether to share the eval point
among all processes in the program’s share group. By default, TotalView
selects the Plant in share group check box for multi-process programs,
but you can override this by clearing this setting.

6 Select the OK button to confirm your changes.
If the code fragment has an error, TotalView displays an error message.
Otherwise, it processes the code, closes the dialog box, and places
an icon on the line number in the Source Pane.

The variables that you refer to in your eval point can either have a global
scope or be local to the block of the line that contains the eval point. If you
declare a variable in the eval point, its scope is the block that contains the

CLI: dbreak –e
dbarrier –e

Defining Eval Points and Conditional Breakpoints

370 Chapter 16: Setting Action Points

eval point unless, for example, you declare it in some other scope or
declare it to be a static variable.

Creating Conditional Breakpoint Examples

The following are examples that show how you can create conditional
breakpoints:

The following example defines a breakpoint that is reached whenever the
counter variable is greater than 20 but less than 25:
if (counter > 20 && counter < 25) $stop;
The following example defines a breakpoint that stops execution every
tenth time that TotalView executes the $count function
$count 10
The following example defines a breakpoint with a more complex expres-
sion:
$count my_var * 2

When the my_var variable equals 4, the process stops the eighth time it
executes the $count function. After the process stops, TotalView reevalu-
ates the expression. If my_var equals 5, the process stops again after the
process executes the $count function ten more times.

The TotalView internal counter is a “static” variable, which means that
TotalView remembers its value every time it executes the eval point. Suppose
you create an eval point within a loop that executes 120 times and the eval
point contains $count 100. Also assume that the loop is within a subroutine.
As expected, TotalView stops execution the 100th time the eval point exe-
cutes. When you resume execution, the remaining 20 iterations occur.

The next time the subroutine executes, TotalView stops execution after 80
iterations because it will have counted the 20 iterations from the last time
the subroutine executed.

This isn't a bug that we're documenting as a feature. Suppose you have a
function that is called from lots of different places from within your pro-
gram. Because TotalView remembers every time a statement executes, you
could, for example, stop execution every 100 times the function is called.
In other words, while $count is most often used within loops, you can use it
outside of them as well.

For descriptions of the $stop, $count, and variations on $count, see “Using
Built-in Variables and Statements” on page 396.

Patching Programs

You can use expressions in eval points to patch your code if you use the
goto (C) and GOTO (Fortran) statements to jump to a different program
location. This lets you do the following:

Branch around code that you don’t want your program to execute.
Add new statements.

Defining Eval Points and Conditional Breakpoints

TotalView Users Guide: version 8.8 371

In many cases, correcting an error means that you will do both operations:
you use a goto to branch around incorrect lines and add corrections.

Branching Around Code
The following example contains a logic error where the program derefer-
ences a null pointer:

1 int check_for_error (int *error_ptr)
2 {
3 *error_ptr = global_error;
4 global_error = 0;
5 return (global_error != 0);
6 }

The error occurs because the routine that calls this function assumes that
the value of error_ptr can be 0. The check_for_error() function, however,
assumes that error_ptr isn’t null, which means that line 3 can dereference a
null pointer.

You can correct this error by setting an eval point on line 3 and entering:

if (error_ptr == 0) goto 4;

If the value of error_ptr is null, line 3 isn’t executed. Notice that you are not
naming a label used in your program. Instead, you are naming one of the
line numbers generated by TotalView.

Adding a Function Call
The example in the previous section routed around the problem. If all you
wanted to do was monitor the value of the global_error variable, you can
add a printf() function call that displays its value. For example, the follow-
ing might be the eval point to add to line 4:

printf ("global_error is %d\n", global_error);

TotalView executes this code fragment before the code on line 4; that is,
this line executes before global_error is set to 0.

Correcting Code
The following example contains a coding error: the function returns the
maximum value instead of the minimum value:

1 int minimum (int a, int b)
2 {
3 int result; /* Return the minimum */
4 if (a < b)
5 result = b;
6 else
7 result = a;
8 return (result);
9 }

Correct this error by adding the following code to an eval point at line 4:

if (a < b) goto 7; else goto 5;

Defining Eval Points and Conditional Breakpoints

372 Chapter 16: Setting Action Points

This effectively replaces the if statement on line 4 with the code in the eval
point.

About Interpreted and Compiled Expressions

On all platforms, TotalView can interpret your eval points. It can compile
them on HP Alpha Tru64 UNIX, IBM AIX, and SGI IRIX platforms. On HP
Alpha Tru64 UNIX and IBM AIX platforms, compiling the expressions in eval
points is the default.

If your platform supports compiled eval points, your performance will be
significantly better, particularly if your program is using multi-processors.
This is because interpreted eval points are single-threaded through the
TotalView process. In contrast, compiled eval points execute on each pro-
cessor.

The TV::compile_expressions CLI variable enables or disables compiled
expressions. See “Operating Systems” in the TotalView Reference Guide for infor-
mation about how TotalView handles expressions on specific platforms.

Using any of the following functions forces TotalView to interpret the eval point rather
than compile it: $clid, $duid, $nid, $processduid, $systid, $tid, and $visualize.
In addition, $pid forces interpretation on IBM AIX.

About Interpreted Expressions
Interpreted expressions are interpreted by TotalView. Interpreted expressions
run slower, possibly much slower, than compiled expressions. With multi-
process programs, interpreted expressions run even more slowly because
processes may need to wait for TotalView to execute the expression.

When you debug remote programs, interpreted expressions always run
slower because the TotalView process on the host, not the TotalView server
(tvdsvr) on the client, interprets the expression. For example, an inter-
preted expression could require that 100 remote processes wait for the
TotalView process on the host machine to evaluate one interpreted expres-
sion. In contrast, if TotalView compiles the expression, it evaluates them on
each remote process.

Whenever a thread hits an interpreted eval point, TotalView stops execution. This means
that TotalView creates a new set of lockstep groups. Consequently, if goal threads con-
tain interpreted patches, the results are unpredictable.

About Compiled Expressions
TotalView compiles, links, and patches expressions into the target process.
Because the target thread executes this code, eval points and conditional
breakpoints execute very quickly. (Conditional watchpoints are always
interpreted.) Also, this code doesn’t need to communicate with the
TotalView host process until it needs to.

Defining Eval Points and Conditional Breakpoints

TotalView Users Guide: version 8.8 373

If the expression executes a $stop function, TotalView stops executing the
compiled expression. At this time, you can single-step through it and con-
tinue executing the expression as you would the rest of your code.

If you plan to use many compiled expressions or your expressions are long,
you may need to think about allocating patch space.

Allocating Patch Space for Compiled Expressions

TotalView must either allocate or find space in your program to hold the
code that it generates for compiled expressions. Since this patch space is
part of your program’s address space, the location, size, and allocation
scheme that TotalView uses might conflict with your program. As a result,
you may need to change how TotalView allocates this space.

You can choose one of the following patch space allocation schemes:

Dynamic patch space allocation: Tells TotalView to dynamically find
the space for your expression’s code.
Static patch space allocation: Tells TotalView to use a statically allo-
cated area of memory.

Allocating Dynamic Patch Space
Dynamic patch space allocation means that TotalView dynamically allocates
patch space for code fragments. If you do not specify the size and location
for this space, TotalView allocates 1 MB. TotalView creates this space using
system calls.

TotalView allocates memory for read, write, and execute access in the
addresses shown in the following table:

Figure 239: Stopped
Execution of Compiled
Expressions

Compiled
expression in
Source Pane

Compiled
expression
gets its own
stack frame

Defining Eval Points and Conditional Breakpoints

374 Chapter 16: Setting Action Points

You can only allocate dynamic patch space for the computers listed in this table.

If the default address range conflicts with your program, or you would like
to change the size of the dynamically allocated patch space, you can
change the following:

Patch space base address by using the –patch_area_base command-line op-
tion.
Patch space length by using the –patch_area_length command-line option.

Allocating Static Patch Space
TotalView can statically allocate patch space if you add a specially named
array to your program. When TotalView needs to use patch space, it uses
the space created for this array.

You can include, for example, a 1 MB statically allocated patch space in
your program by adding the TVDB_patch_base_address data object in a C
module. Because this object must be 8-byte aligned, declare it as an array
of doubles; for example:

/* 1 megabyte == size TV expects */
#define PATCH_LEN 0x100000
double TVDB_patch_base_address [PATCH_LEN /
sizeof(double)]

If you need to use a static patch space size that differs from the 1 MB default,
you must use assembler language. The following table shows sample assem-
bler code for three platforms that support compiled patch points:

Platform Address Range
HP Alpha Tru64 UNIX 0xFFFFF00000 – 0xFFFFFFFFFF
IBM AIX (-q32) 0xEFF00000 – 0xEFFFFFFF

IBM AIX (-q64) 0x07f0000000000000 –
0x07ffffffffffffff

SGI IRIX (–n32) 0x4FF00000 – 0x4FFFFFFF
SGI IRIX (–64) 0x8FF00000 – 0x8FFFFFFF

Platform Assembler Code
HP Alpha Tru64 UNIX .data

.align 3

.globl TVDB_patch_base_address

.globl TVDB_patch_end_address
TVDB_patch_base_address:
.byte 0x00 : PATCH_SIZE
TVDB_patch_end_address:

Using Watchpoints

TotalView Users Guide: version 8.8 375

To use the static patch space assembler code:

1 Use an ASCII editor and place the assembler code into a file named
tvdb_patch_space.s.

2 Replace the PATCH_SIZE tag with the decimal number of bytes you want.
This value must be a multiple of 8.

3 Assemble the file into an object file by using a command such as:
cc –c tvdb_patch_space.s

On SGI IRIX, use –n32 or –64 to create the correct object file type.
4 Link the resulting tvdb_patch_space.o into your program.

Using Watchpoints

TotalView lets you monitor the changes that occur to memory locations by
creating a special type of action point called a watchpoint. You most often
use watchpoints to find a statement in your program that is writing to
places to which it shouldn’t be writing. This can occur, for example, when
processes share memory and more than one process writes to the same
location. It can also occur when your program writes off the end of an array
or when your program has a dangling pointer.

Topics in this section are:

“Using Watchpoints on Different Architectures” on page 376
“Creating Watchpoints” on page 377
“Watching Memory” on page 379
“Triggering Watchpoints” on page 379
“Using Conditional Watchpoints” on page 380

TotalView watchpoints are called modify watchpoints because TotalView only
triggers a watchpoint when your program modifies a memory location. If a
program writes a value into a location that is the same as what is already

IBM AIX .csect .data{RW}, 3
.globl TVDB_patch_base_address
.globl TVDB_patch_end_address
TVDB_patch_base_address:
.space PATCH_SIZE
TVDB_patch_end_address:

SGI IRIX .data
.align 3
.globl TVDB_patch_base_address
.globl TVDB_patch_end_address
TVDB_patch_base_address:
.space PATCH_SIZE
TVDB_patch_end_address:

Platform Assembler Code

Using Watchpoints

376 Chapter 16: Setting Action Points

stored, TotalView doesn’t trigger the watchpoint because the location’s value
did not change.

For example, if location 0x10000 has a value of 0 and your program writes a
value of 0 to this location, TotalView doesn’t trigger the watchpoint, even
though your program wrote data to the memory location. See “Triggering
Watchpoints” on page 379 for more details on when watchpoints trigger.

You can also create conditional watchpoints. A conditional watchpoint is similar
to a conditional breakpoint in that TotalView evaluates the expression when
the value in the watched memory location changes. You can use conditional
watchpoints for a number of purposes. For example, you can use one to test
whether a value changes its sign—that is, it becomes positive or negative—or
whether a value moves above or below some threshold value.

Using Watchpoints on Different Architectures

The number of watchpoints, and their size and alignment restrictions, differ
from platform to platform. This is because TotalView relies on the operating
system and its hardware to implement watchpoints.

Watchpoints are not available on Macintosh computers running OS X, IBM PowerPC
computers running Linux Power, and Hewlett Packard (HP) computers running HP-UX
(PA-RISC).

The following list describes constraints that exist on each platform:

Computer Constraints
HP Alpha Tru64 Tru64 places no limitations on the number of watchpoints that

you can create, and no alignment or size constraints. However,
watchpoints can’t overlap, and you can’t create a watchpoint on
an already write-protected page.
Watchpoints use a page-protection scheme. Because the page
size is 8,192 bytes, watchpoints can degrade performance if your
program frequently writes to pages that contains watchpoints

IRIX6 MIPS Watchpoints are implemented on IRIX 6.2 and later operating
systems. These systems let you create approximately 100
watchpoints. There are no alignment or size constraints.
However, watchpoints can’t overlap.

IBM AIX You can create one watchpoint on AIX 4.3.3.0-2 (AIX 4.3R) or later
systems running 64-bit chips. These are Power3 and Power4
systems. (AIX 4.3R is available as APAR IY06844.) A watchpoint
cannot be longer than 8 bytes, and you must align it within an 8-
byte boundary. If your watchpoint is less than 8 bytes and it
doesn’t span an 8-byte boundary, TotalView figures out what to
do.
You can create compiled conditional watchpoints when you use
this system. When watchpoints are compiled, they are evaluated
by the process rather than having to be evaluated in TotalView
where all evaluations are single-threaded and must be sent from
separately executing processes. Only systems having fast traps
can have compiled watchpoints.

Using Watchpoints

TotalView Users Guide: version 8.8 377

Typically, a debugging session doesn’t use many watchpoints. In most cases,
you are only monitoring one memory location at a time. Consequently,
restrictions on the number of values you can watch seldom cause problems.

Creating Watchpoints

Watchpoints are created by using either the Action Points> Create
Watchpoint command in the Process Window or the Tools > Create
Watchpoint Dialog Box. (If your platform doesn’t support watchpoints,
TotalView dims this menu item.) Here are some things you should know:

You can also set watchpoints by right-clicking within the Process and
Variable Windows and then select Create Watchpoint from the context
menu.
You can select an expression within the Source and Stack Frame panes
and then use a context menu or select the Action Points > Create
Watchpoint command. If you invoke either of these commands and
TotalView cannot determine where to set the expression, it displays a di-
alog box into which you type the variable’s name.
If you select the Tools > Create Watchpoint command and a compound
variable such an array or structure is being displayed, TotalView sets the
watchpoint on the first element. However, if you select an element be-
fore invoking this command, TotalView sets the watchpoint on that ele-
ment.

If you set a watchpoint on a stack variable, TotalView that lets you know
that you’re trying to set a watchpoint on “non-global” memory. For exam-
ple, the variable is on the stack or in a block and the variable will no longer
exist when the stack is popped or control leaves the block. In either of
these cases, it is likely that your program will overwrite the memory and the
watchpoint will no longer be meaningful. See “Watching Memory” on
page 379for more information.

Linux x86 You can create up to four watchpoints and each must be 1, 2, or 4
bytes in length, and a memory address must be aligned for the
byte length. That is, you must align a 4-byte watchpoint on a 4-
byte address boundary, and you must align a 2-byte watchpoint
on a 2-byte boundary, and so on.

Linux x86-64 (AMD
and Intel)

You can create up to four watchpoints and each must be 1, 2, 4,
or 8 bytes in length, and a memory address must be aligned for
the byte length. For example, you must align a 4-byte watchpoint
on a 4-byte address boundary.

HP-UX IA-64 and
Linux IA-64

You can create up to four watchpoints. The length of the memory
being watched must be a power of 2 and the address must be
aligned to that power of 2; that is, (address % length) == 0.

Solaris SPARC TotalView supports watchpoints on Solaris 7 or later operating
systems. These operating systems let you create hundreds of
watchpoints, and there are no alignment or size constraints.
However, watchpoints can’t overlap.

Computer Constraints

Using Watchpoints

378 Chapter 16: Setting Action Points

After you select a Create Watchpoint command, TotalView displays its
Watchpoint Properties dialog box. See Figure 240.

Controls in this dialog box let you create unconditional and conditional
watchpoints. When you set a watchpoint, you are setting it on the com-
plete contents of the information being displayed in the Variable Window.
For example, if the Variable Window displays an array, you can only set a
watchpoint on the entire array (or as many bytes as TotalView can watch.) If
you only want to watch one array element, dive on the element and then
set the watchpoint. Similarly, if the Variable Window displays a structure
and you only want to watch one element, dive on the element before you
set the watchpoint.

See the online Help for information on the fields in this dialog box.

Displaying Watchpoints
The watchpoint entry, indicated by UDWP (Unconditional Data Watchpoint)
and CDWP (Conditional Data Watchpoint), displays the action point ID, the
amount of memory being watched, and the location being watched.

If you select a watchpoint, TotalView toggles the enabled/disabled state of
the watchpoint.

Figure 240: Tools >
Watchpoint Dialog Boxes

Using Watchpoints

TotalView Users Guide: version 8.8 379

Watching Memory

A watchpoint tracks a memory location—it does not track a variable. This
means that a watchpoint might not perform as you would expect it to when
watching stack or automatic variables. For example, suppose that you want
to watch a variable in a subroutine. When control exits from the subrou-
tine, the memory allocated on the stack for this subroutine is deallocated.
At this time, TotalView is watching unallocated stack memory. When the
stack memory is reallocated to a new stack frame, TotalView is still watch-
ing this same position. This means that TotalView triggers the watchpoint
when something changes this newly allocated memory.

Also, if your program reinvokes a subroutine, it usually executes in a differ-
ent stack location. TotalView cannot monitor changes to the variable
because it is at a different memory location.

All of this means that in most circumstances, you shouldn’t place a watch-
point on a stack variable. If you need to watch a stack variable, you will
need to create and delete the watchpoint each time your program invokes
the subroutine.

This doesn’t mean you can’t place a watchpoint on a stack or heap variable.
It just means that what happens is undefined after this memory is released.
For example, after you enter a routine, you can be assured that memory
locations are always tracked accurately until the memory is released.

In some circumstances, a subroutine may be called from the same location. This means
that its local variables might be in the same location. So, you might want to try.

If you place a watchpoint on a global or static variable that is always
accessed by reference (that is, the value of a variable is always accessed
using a pointer to the variable), you can set a watchpoint on it because the
memory locations used by the variable are not changing.

Triggering Watchpoints

When a watchpoint triggers, the thread’s program counter (PC) points to
the instruction following the instruction that caused the watchpoint to trig-
ger. If the memory store instruction is the last instruction in a source state-
ment, the PC points to the source line following the statement that triggered
the watchpoint. (Breakpoints and watchpoints work differently. A break-
point stops before an instruction executes. In contrast, a watchpoint stops
after an instruction executes.)

Using Multiple Watchpoints
If a program modifies more than one byte with one program instruction or
statement, which is normally the case when storing a word, TotalView triggers
the watchpoint with the lowest memory location in the modified region.
Although the program might be modifying locations monitored by other
watchpoints, TotalView only triggers the watchpoint for the lowest memory

Using Watchpoints

380 Chapter 16: Setting Action Points

location. This can occur when your watchpoints are monitoring adjacent
memory locations and a single store instruction modifies these locations.

For example, suppose that you have two 1-byte watchpoints, one on loca-
tion 0x10000 and the other on location 0x10001. Also suppose that your
program uses a single instruction to store a 2-byte value at locations
0x10000 and 0x10001. If the 2-byte storage operation modifies both bytes,
the watchpoint for location 0x10000 triggers. The watchpoint for location
0x10001 does not trigger.

Here’s a second example. Suppose that you have a 4-byte integer that uses
storage locations 0x10000 through 0x10003, and you set a watchpoint on
this integer. If a process modifies location 0x10002, TotalView triggers the
watchpoint. Now suppose that you’re watching two adjacent 4-byte inte-
gers that are stored in locations 0x10000 through 0x10007. If a process
writes to locations 0x10003 and 0x10004 (that is, one byte in each),
TotalView triggers the watchpoint associated with location 0x10003. The
watchpoint associated with location 0x10004 does not trigger.

Copying Previous Data Values
TotalView keeps an internal copy of data in the watched memory locations
for each process that shares the watchpoint. If you create watchpoints that
cover a large area of memory or if your program has a large number of pro-
cesses, you increase TotalView’s virtual memory requirements. Further-
more, TotalView refetches data for each memory location whenever it con-
tinues the process or thread. This can affect performance.

Using Conditional Watchpoints

If you associate an expression with a watchpoint (by selecting the
Conditional button in the Watchpoint Properties dialog box entering an
expression), TotalView evaluates the expression after the watchpoint trig-
gers. The programming statements that you can use are identical to those
used when you create an eval point, except that you can’t call functions
from a watchpoint expression.

The variables used in watchpoint expressions must be global. This is
because the watchpoint can be triggered from any procedure or scope in
your program.

Fortran does not have global variables. Consequently, you can’t directly refer to your
program’s variables.

TotalView has two variables that are used exclusively with conditional
watchpoint expressions:

$oldval The value of the memory locations before a change is
made.

$newval The value of the memory locations after a change is
made.

Using Watchpoints

TotalView Users Guide: version 8.8 381

The following is an expression that uses these values:

if (iValue != 42 && iValue != 44) {
iNewValue = $newval; iOldValue = $oldval; $stop;}

When the value of the iValue global variable is neither 42 nor 44, TotalView
stores the new and old memory values in the iNewValue and iOldValue vari-
ables. These variables are defined in the program. (Storing the old and new
values is a convenient way of letting you monitor the changes made by your
program.)

The following condition triggers a watchpoint when a memory location’s
value becomes negative:

if ($oldval >= 0 && $newval < 0) $stop

And, here is a condition that triggers a watchpoint when the sign of the
value in the memory location changes:

if ($newval * $oldval <= 0) $stop

Both of these examples require that you set the Type for $oldval/$newval
field in the Watchpoint Properties Dialog Box.

For more information on writing expressions, see “Using Programming Lan-
guage Elements” on page 387.

If a watchpoint has the same length as the $oldval or $newval data type,
the value of these variables is apparent. However, if the data type is shorter
than the length of the watch region, TotalView searches for the first
changed location in the watched region and uses that location for the
$oldval and $newval variables. (It aligns data in the watched region based
on the size of the data’s type. For example, if the data type is a 4-byte inte-
ger and byte 7 in the watched region changes, TotalView uses bytes 4
through 7 of the watchpoint when it assigns values to these variables.)

For example, suppose you’re watching an array of 1000 integers called
must_be_positive, and you want to trigger a watchpoint as soon as one ele-
ment becomes negative. You declare the type for $oldval and $newval to
be int and use the following condition:

if ($newval < 0) $stop;

When your program writes a new value to the array, TotalView triggers the
watchpoint, sets the values of $oldval and $newval, and evaluates the
expression. When $newval is negative, the $stop statement halts the pro-
cess.

This can be a very powerful technique for range-checking all the values
your program writes into an array. (Because of byte length restrictions, you
can only use this technique on IRIX and Solaris.)

On all platforms except for IBM AIX, TotalView always interprets conditional watch-
points; it never compiles them. Because interpreted watchpoints are single-threaded in
TotalView, every process or thread that writes to the watched location must wait for other
instances of the watchpoint to finish executing. This can adversely affect performance.

Saving Action Points to a File

382 Chapter 16: Setting Action Points

Saving Action Points to a File

You can save a program’s action points to a file. TotalView then uses this
information to reset these points when you restart the program. When you
save action points, TotalView creates a file named program.TVD.breakpoints,
where program is the name of your program.

TotalView does not save watchpoints because memory addresses can change radically
every time you restart TotalView and your program.

Use the Action Point > Save All command to save your action points to a
file. TotalView places the action points file in the same directory as your
program. In contrast, the Action Point > Save As command lets you name
the file to which TotalView saves this information.

If you’re using a preference to automatically save breakpoints, TotalView
automatically saves action points to a file. Alternatively, starting TotalView
with the –sb option (see “TotalView Command Syntax” in the TotalView Reference
Guide) also tells TotalView to save your breakpoints.

At any time, you can restore saved action points if you use the Action
Points > Load All command. After invoking this command, TotalView dis-
plays a File Explorer Window that you can use to navigate to or name the
saved file.

You control automatic saving and loading by setting preferences. (See
File > Preferences in the online Help for more information.)

CLI: dactions –save filename

CLI: dactions –load filename

CLI: dset TV::auto_save_breakpoints

TotalView Users Guide: version 8.8 383

c
h
a
p
t
e
r

Evaluating
Expressions

17

Whether you realize it or not, you’ve been telling TotalView to evalu-
ate expressions and you’ve even been entering them. In every pro-
gramming language, variables are actually expressions—actually
they are lvalues—whose evaluation ends with the interpretation of
memory locations into a displayable value. Structure, pointer and
array variables, particularly arrays where the index is also a variable,
are slightly more complicated.

While debugging, you also need to evaluate expressions that contain
function calls and programming language elements such as for and
while loops.

This chapter discusses what you can do evaluating expressions
within TotalView. The topics discussed are:

“Why is There an Expression System?” on page 383
“Using Programming Language Elements” on page 387
“Using the Evaluate Window” on page 391
“Using Built-in Variables and Statements” on page 396

Why is There an Expression System?

Either directly or indirectly, accessing and manipulating data requires an
evaluation system. When your program (and TotalView, of course) accesses
data, it must determine where this data resides. The simplest data lookups
involve two operations: looking up an address in your program’s symbol
table and interpreting the information located at this address based on a
variable’s datatype. For simple variables such as an integer or a floating
point number, this is all pretty straightforward.

Why is There an Expression System?

384 Chapter 17: Evaluating Expressions

Looking up array data is slightly more complicated. For example, if the pro-
gram wants my_var[9]—this chapter will most often use C and C++ nota-
tion rather than Fortran—it looks up the array’s starting address, then
applies an offset to locate the array’s 10th element. In this case, if each
array element uses 32 bits, my_var[9] is located 9 times 32 bits away.

In a similar fashion, your program obtains information about variables
stored in structures and arrays of structures.

Structures complicate matters slightly. For example ptr->my_var requires
three operations: extract the data contained within address of the my_var
variable, use this information to access the data at the address being
pointed to, then display the data according to the variable’s datatype.

Accessing an array element such as my_var[9] where the array index is an
integer constant is rare in most programs. In most cases, your program
uses variables or expressions as array indices; for example, my_var[cntr] or
my_var[cntr+3]. In the later case, TotalView must determine the value of
cntr+3 before it can access an array element.

Using variables and expressions as array indices are common. However, the
array index can be (and often is) an integer returned by a function. For
example:

my_var[access_func(first_var, second_var)+2]

In this example, a function with two arguments returns a value. That
returned value is incremented by two, and the resulting value becomes the
array index. Here is an illustration showing TotalView accessing the my_var
array in the four ways discussed in this section:

In Fortran and C, access to data is usually through variables with some sort
of simple evaluation or a function. Access to variable information can be
the same in C++ as it is in these languages. However, accessing private
variables within a class almost always uses a method. For example:

myDataStructureList.get_current_place()

TotalView built-in expression evaluation system is able to understand your
class inheritance structure in addition to following C++ rules for method

Figure 241: Expression List
Window: Accessing Array
Elements

Why is There an Expression System?

TotalView Users Guide: version 8.8 385

invocation and polymorphism. (This is discussed in “Using C++” on
page 386.)

Calling Functions: Problems and Issues

Unfortunately, calling functions in the expression system can cause prob-
lems. Some of these problems are:

What happens if the function has a side effect For example, suppose you
have entered my_var[cntr] in one row in an Expression List Window, fol-
lowed by my_var[++cntr] in another. If cntr equals 3, you’ll be seeing the
values of my_var[3] and my_var[4]. However, since cntr now equals 4, the
first entry is no longer correct.
What happens when the function crashes (after all you are trying to debug
problems), doesn’t return, returns the wrong value, or hits a breakpoint?
What does calling functions do to your debugging interaction if evalua-
tion takes an excessive amount of time?
What happens if a function creates processes and threads? Or worse,
kills them?

In general, there are some protections in the code. For example, if you’re
displaying items in an Expression List Window, TotalView avoids being in an
infinite loop by only evaluating items once. This does mean that the infor-
mation is only accurate at the time at which TotalView made the evaluation.

In most other cases, you’re basically on your own. If there’s a problem,
you’ll get an error message. If something takes too long, you can press the
Halt button. But if a function alters memory values or starts or stops pro-
cesses or threads and you can’t live with it, you’ll need to restart your pro-
gram. However, if an error occurs while using the Evaluate Window, pressing
the Stop button pops the stack, leaving your program in the state it was in
before you used the Evaluate command. However, changes made to heap
variables will, of course, not be undone.

Expressions in Eval Points and the Evaluate Window

Expression evaluation is not limited to a Variable Window or an Expression
List Window. You can use expressions within eval points and in the Tools >
Evaluate Window. The expressions you type here also let you use program-
ming language constructs. For example, here’s a trivial example of code
that can execute within the Evaluate Window:

int i, j, k;
j = k = 10;
for (i=0; i< 20; i++)
{

j = j + access_func(i, k);
}
j;

This code fragment declares a couple of variables, runs them through a for
loop, then displays the value of j. In all cases, the programming language
constructs being interpreted or compiled within TotalView are based on

Why is There an Expression System?

386 Chapter 17: Evaluating Expressions

code within TotalView. TotalView is not using the compiler you used to cre-
ate your program or any other compiler or interpreter on your system.

Notice the last statement in Figure 242. TotalView displays the value
returned by the last statement. This value is displayed. (See “Displaying the
Value of the Last Statement” on page 386.)

TotalView assumes that there is always a return value, even if it’s evaluating
a loop or the results of a subroutine returning a void. The results are, of
course, not well-defined. If the value returned is not well-defined, TotalView
displays a zero in the Result area.

The code within eval points and the Evaluate Window does not run in the
same address space as that in which your program runs. Because TotalView
is a debugger, it knows how to reach into your program’s address space.
The reverse isn’t true: your program can’t reach into the TotalView address
space. This forces some limitations upon what you can do. In particular,
you can not enter anything that directly or indirectly needs to pass an
address of a variable defined within the TotalView expression into your pro-
gram. Similarly, invoking a function that expects a pointer to a value and
whose value is created within TotalView can’t work. However, you can
invoke a function whose parameter is an address and you name something
within that program’s address space. For example, you could say some-
thing like adder(an_array) if an_array is contained within your program.

Using C++

The TotalView expression system is able to interpret the way you define
your classes and their inheritance hierarchy. For example, if you declare a
method in a base class and you invoke upon an object instantiated from a
derived class, TotalView knows how to access the function. It also under-

Figure 242: Displaying the
Value of the Last
Statement

Using Programming Language Elements

TotalView Users Guide: version 8.8 387

stands when a function is virtual. For example, assume that you have the
following declarations:

class Circle : public Shape {
public:

...
virtual double area();
virtual double area(int);
double area(int, int);

Figure 243 shows an expression list calling an overloaded function. It also
shows a setter (mutator) that changes the size of the circle object. A final
call to area shows the new value.

If your object is instantiated from a class that is part of an inheritance hier-
archy, TotalView shows you the hierarchy when you dive on the object. See
Figure 244 on page 388.

Using Programming Language
Elements

Using C and C++

This section contains guidelines for using C and C++ in expressions.

You can use C-style (/* comment */) and C++-style (// comment) com-
ments; for example:
// This code fragment creates a temporary patch
i = i + 2; /* Add two to i */
You can omit semicolons if the result isn’t ambiguous.
You can use dollar signs ($) in identifiers. However, we recommend that you
do not use dollar signs in names created within the expression system.

Figure 243: Expression List
Window: Showing
Overloads

Using Programming Language Elements

388 Chapter 17: Evaluating Expressions

If your program does not use a templated function within a library, your compiler may
not include a reference to the function in the symbol table. That is, TotalView does not
create template instances. In some cases, you might be able to overcome this limitation
by preloading the library. However, this only works with some compilers. Most compilers
only generate STL operators if your program uses them.

You can use the following C and C++ data types and declarations:

You can use all standard data types such as char, short, int, float, and
double, modifiers to these data types such as long int and unsigned int,
and pointers to any primitive type or any named type in the target program.
You can only use simple declarations. Do not define stuct, class, enum or
union types or variables.
You can define a pointer to any of these data types. If an enum is already
defined in your program, you can use that type when defining a variable.
The extern and static declarations are not supported.

You can use the following the C and C++ language statements.

You can use the goto statement to define and branch to symbolic labels.
These labels are local to the window. You can also refer to a line number
in the program. This line number is the number displayed in the Source
Pane. For example, the following goto statement branches to source line
number 432 of the target program:
goto 432;
Although you can use function calls, you can’t pass structures.
You can use type casting.

Figure 244: Class Casting

Using Programming Language Elements

TotalView Users Guide: version 8.8 389

You can use assignment, break, continue, if/else structures, for, goto, and
while statements. Creating a goto that branches to another TotalView
evaluation is undefined.

Using Fortran

When writing code fragments in Fortran, you need to follow these guidelines:

In general, you can use free-form syntax. You can enter more than one
statement on a line if you separate the statements with semi-colons (;).
However, you cannot continue a statement onto more than one line.
You can use GOTO, GO TO, ENDIF, and END IF statements; Although
ELSEIF statements aren’t allowed, you can use ELSE IF statements.
Syntax is free-form. No column rules apply.
The space character is significant and is sometimes required. (Some For-
tran 77 compilers ignore all space characters.) For example:

You can use the following data types and declarations in a Fortran expression:

You can use the INTEGER, REAL, DOUBLE PRECISION, and COMPLEX data
types.
You can’t define or declare variables that have implied or derived data
types.
You can only use simple declarations. You can’t use a COMMON, BLOCK
DATA, EQUIVALENCE, STRUCTURE, RECORD, UNION, or array declaration.
You can refer to variables of any type in the target program.
TotalView assumes that integer (kind=n) is an n-byte integer.

Fortran Statements
You can use the Fortran language statements:

You can use assignment, CALL (to subroutines, functions, and all intrinsic
functions except CHARACTER functions in the target program),
CONTINUE, DO, GOTO, IF (including block IF, ENDIF, ELSE, and ELSE IF), and
RETURN (but not alternate return) statements.
If you enter a comment in an expression, precede the comment with an
exclamation point (!).
You can use array sections within expressions. For more information, see
“Array Slices and Array Sections” on page 338.
A GOTO statement can refer to a line number in your program. This line
number is the number that appears in the Source Pane. For example, the
following GOTO statement branches to source line number 432:
GOTO $432;
You must use a dollar sign ($) before the line number so that TotalView
knows that you’re referring to a source line number rather than a statement
label.

Valid Invalid
DO 100 I=1,10 DO100I=1,10

CALL RINGBELL CALL RING BELL

X .EQ. 1 X.EQ.1

Using Programming Language Elements

390 Chapter 17: Evaluating Expressions

You cannot branch to a label within your program. You can instead branch
to a TotalView line number.
The following expression operators are not supported: CHARACTER oper-
ators and the .EQV., .NEQV., and .XOR. logical operators.
You can’t use subroutine function and entry definitions.
You can’t use Fortran 90 pointer assignment (the => operator).
You can’t call Fortran 90 functions that require assumed shape array ar-
guments.

Fortran Intrinsics
TotalView supports some Fortran intrinsics. You can use these supported
intrinsics as elements in expressions. The classification of these intrinsics
into groups is that contained within Chapter 13 of the Fortran 95 Handbook,
by Jeanne C. Adams, et al., published by the MIT Press.

TotalView does not support the evaluation of expressions involving com-
plex variables (other than as the arguments for real or aimag). In addition,
we do not support function versions. For example, you cannot use dcos
(the double-precision version of cos).

The supported intrinsics are:

Bit Computation functions: btest, iand, ibclr, ibset, ieor, ior, and not.
Conversion, Null and Transfer functions: achar, aimag, char, dble, iachar,
ichar, int, and real.
Inquiry and Numeric Manipulation Functions: bit_size.
Numeric Computation functions: acos, asin, atan, atan2, ceiling, cos,
cosh, exp, floor, log, log10, pow, sin, sinh, sqrt, tan, and tanh.
Complex arguments to these functions are not supported. In addition, on
MacIntosh and AIX, the log10, ceiling, and floor intrinsics are not sup-
ported.

The following are not supported:

Array functions
Character computation functions.
Intrinsic subroutines

If you statically link your program, you can only use intrinsics that are linked into
your code. In addition, if your operating system is Mac OS X, AIX, or Linux/Power,
you can only use math intrinsics in expressions if you directly linked them into your
program. The ** operator uses the pow function. Consequently, it too must either be
used within your program or directly linked. In addition, ceiling and log10 are not
supported on these three platforms.

Using the Evaluate Window

TotalView Users Guide: version 8.8 391

Using the Evaluate Window

TotalView lets you open a window to evaluate expressions in the context of
a particular process and evaluate them in C, Fortran, or assembler.

Not all platforms let you use assembler constructs. See “Architectures” in the TotalView
Reference Guide for details.

You can use the Tools > Evaluate Dialog Box in many different ways. The
following are two examples:

Expressions can contain loops, so you can use a for loop to search an
array of structures for an element set to a certain value. In this case, you
use the loop index at which the value is found as the last expression in
the expression field.
Because you can call subroutines, you can test and debug a single rou-
tine in your program without building a test program to call it.

Although the CLI does not have an evaluate command, the information in the following
sections does apply to the expression argument of the dbreak, dbarrier, dprint, and
dwatch commands.

To evaluate an expression: Display the Evaluate Dialog Box by selecting the
Tools > Evaluate command.

An Evaluate Dialog Box appears. If your program hasn’t yet been created,
you won’t be able to use any of the program’s variables or call any of its
functions.

1 Select a button for the programming language you’re writing the expres-
sion in (if it isn’t already selected).

2 Move to the Expression field and enter a code fragment. For a description
of the supported language constructs, see “Using Built-in Variables and
Statements” on page 396.
The following figure shows a sample expression. The last statement in this
example assigns the value of my_var1-3 back to my_var1. Because this is
the last statement in the code fragment, the value placed in the Result
field is the same as if you had just typed my_var1-3. (See Figure 245 on
page 392.)

3 Click the Evaluate button.
If TotalView finds an error, it places the cursor on the incorrect line and
displays an error message. Otherwise, it interprets (or on some platforms,
compiles and executes) the code, and displays the value of the last
expression in the Result field.
While the code is being executed, you can’t modify anything in the dialog
box. TotalView might also display a message box that tells you that it is
waiting for the command to complete. (See Figure 246 on page 392.)

Using the Evaluate Window

392 Chapter 17: Evaluating Expressions

If you click Cancel, TotalView stops execution.

Since TotalView evaluates code fragments in the context of the target pro-
cess, it evaluates stack variables according to the current program counter.
If you declare a variable, its scope is the block that contains the program
counter unless, for example, you declare it in some other scope or declare
it to be a static variable.

If the fragment reaches a breakpoint (or stops for any other reason),
TotalView stops evaluating your expression. Assignment statements in an
expression can affect the target process because they can change a vari-
able’s value.

The controls at the top of the dialog box let you refine the scope at which
TotalView evaluates the information you enter. For example, you can evalu-
ate a function in more than one process. The following figure shows
TotalView displaying the value of a variable in multiple processes, and then
sending the value as it exists in each process to a function that runs on
each of these processes. (See Figure 247 on page 393.)

See Chapter 13, “Using Groups, Processes, and Threads,” on page 253 for infor-
mation on using the P/T set controls at the top of this window.

Writing Assembler Code

On HP Alpha Tru64 UNIX, RS/6000 IBM AIX, and SGI IRIX operating sys-
tems, TotalView lets you use assembler code in eval points, conditional

Figure 245: Tools > Evaluate
Dialog Box

Figure 246: Waiting to
Complete Message Box

Using the Evaluate Window

TotalView Users Guide: version 8.8 393

breakpoints, and in the Tools > Evaluate Dialog Box. However, if you want
to use assembler constructs, you must enable compiled expressions. See
“About Interpreted and Compiled Expressions” on page 372 for instructions.

To indicate that an expression in the breakpoint or Evaluate Dialog Box is
an assembler expression, click the Assembler button in the Action Point >
Properties Dialog Box. (See Figure 248.)

Figure 247: Evaluating
Information in Multiple
Processes

Figure 248: Using Assembler
Expressions

Using the Evaluate Window

394 Chapter 17: Evaluating Expressions

You write assembler expressions in the target machine’s native assembler
language and in a TotalView assembler language. However, the operators
available to construct expressions in instruction operands, and the set of
available pseudo-operators, are the same on all machines, and are described
below.

The TotalView assembler accepts instructions using the same mnemonics
recognized by the native assembler, and it recognizes the same names for
registers that native assemblers recognize.

Some architectures provide extended mnemonics that do not correspond
exactly with machine instructions and which represent important, special
cases of instructions, or provide for assembling short, commonly used
sequences of instructions. The TotalView assembler recognizes mnemonics
if:

They assemble to exactly one instruction.
The relationship between the operands of the extended mnemonics and
the fields in the assembled instruction code is a simple one-to-one cor-
respondence.

Assembler language labels are indicated as name: and appear at the begin-
ning of a line. You can place a label alone on a line. The symbols you can
use include labels defined in the assembler expression and all program
symbols.

The TotalView assembler operators are described in the following table:

The TotalView assembler pseudo-operations are as follows:

Operators Description
+ Plus
– Minus (also unary)
* Multiplication
Remainder
/ Division
& Bitwise AND
^ Bitwise XOR
! Bitwise OR NOT (also unary minus, bitwise NOT)
| Bitwise OR
(expr) Grouping
<< Left shift
>> Right shift
“text” Text string, 1-4 characters long, is right-justified in a 32-bit

word
hi16 (expr) Low 16 bits of operand expr
hi32 (expr) High 32 bits of operand expr
lo16 (expr) High 16 bits of operand expr
lo32 (expr) Low 32 bits of operand expr

Using the Evaluate Window

TotalView Users Guide: version 8.8 395

Pseudo Ops Description
$debug [0 | 1] Internal debugging option.

With no operand, toggle debugging;
0 => turn debugging off
1 => turn debugging on

$hold
$holdprocess

Hold the process

$holdstopall
$holdprocessstopall

Hold the process and stop the control group

$holdthread Hold the thread
$holdthreadstop
$holdthreadstopprocess

Hold the thread and stop the process

$holdthreadstopall Hold the thread and stop the control group
$long_branch expr Branch to location expr using a single instruction in an

architecture-independent way; using registers is not
required

$stop
$stopprocess

Stop the process

$stopall Stop the control group
$stopthread Stop the thread
name=expr Same as def name,expr
align expr [, expr] Align location counter to an operand 1 alignment;

use operand 2 (or 0) as the fill value for skipped bytes
ascii string Same as string
asciz string Zero-terminated string
bss name,size-expr[,expr] Define name to represent size-expr bytes of storage in

the bss section with alignment optional expr; the
default alignment depends on the size:
if size-expr >= 8 then 8 else
if size-expr >= 4 then 4 else
if size-expr >= 2 then 2 else 1

byte expr [, expr] ... Place expr values into a series of bytes
comm name,expr Define name to represent expr bytes of storage in the

bss section; name is declared global; alignment is as in
bss without an alignment argument

data Assemble code into data section (data)
def name,expr Define a symbol with expr as its value
double expr [, expr] ... Place expr values into a series of doubles
equiv name,name Make operand 1 an abbreviation for operand 2
fill expr, expr, expr Fill storage with operand 1 objects of size operand 2,

filled with value operand 3
float expr [, expr] ... Place expr values into a series of floating point

numbers
global name Declare name as global
half expr [, expr] ... Place expr values into a series of 16-bit words
lcomm name,expr[,expr] Identical to bss

lsym name,expr Same as def name,expr but allows redefinition of a
previously defined name

org expr [, expr] Set location counter to operand 1 and set operand 2
(or 0) to fill skipped bytes

Using Built-in Variables and Statements

396 Chapter 17: Evaluating Expressions

Using Built-in Variables and
Statements

TotalView contains a number of built-in variables and statements that can
simplify your debugging activities. You can use these variables and state-
ments in eval points and in the Tools > Evaluate Dialog Box.

Topics in this section are:

“Using TotalView Variables” on page 396
“Using Built-In Statements” on page 397

Using TotalView Variables

TotalView variables that let you access special thread and process values.
All variables are 32-bit integers, which is an int or a long on most plat-
forms. The following table describes built-in variables:

quad expr [, expr] ... Place expr values into a series of 64-bit words
string string Place string into storage
text Assemble code into text section (code)
word expr [, expr] ... Place expr values into a series of 32-bit words
zero expr Fill expr bytes with zeros

Name Returns
$clid The cluster ID. (Interpreted expressions only.)
$duid The TotalView-assigned Debugger Unique ID (DUID).

(Interpreted expressions only.)
$newval The value just assigned to a watched memory location.

(Watchpoints only.)
$nid The node ID. (Interpreted expressions only.)
$oldval The value that existed in a watched memory location before

a new value modified it. (Watchpoints only.)
$pid The process ID.
$processduid The DUID (debugger ID) of the process. (Interpreted

expressions only.)
$systid The thread ID assigned by the operating system. When this is

referenced from a process, TotalView throws an error.
$tid The thread ID assigned by TotalView. When this is referenced

from a process, TotalView throws an error.

Pseudo Ops Description

Using Built-in Variables and Statements

TotalView Users Guide: version 8.8 397

The built-in variables let you create thread-specific breakpoints from the
expression system. For example, the $tid variable and the $stop built-in func-
tion let you create a thread-specific breakpoint, as the following code shows:

if ($tid == 3)
$stop;

This tells TotalView to stop the process only when the third thread evalu-
ates the expression.

You can also create complex expressions using these variables; for example:

if ($pid != 34 && $tid > 7)
printf (“Hello from %d.%d\n”, $pid, $tid);

Using any of the following variables means that the eval point is interpreted
instead of compiled: $clid, $duid, $nid, $processduid, $systid, $tid, and
$visualize. In addition, $pid forces interpretation on AIX.

You can’t assign a value to a built-in variable or obtain its address.

Using Built-In Statements

TotalView statements help you control your interactions in certain circum-
stances. These statements are available in all languages, and are described
in the following table. The most commonly used statements are $count,
$stop, and $visualize.

Statement Use
$count expression
$countprocess expression

Sets a process-level countdown breakpoint.
When any thread in a process executes this
statement for the number of times specified by
expression, the process stops. The other processes in
the control group continue to execute.

$countall expression Sets a program-group-level countdown breakpoint.
All processes in the control group stop when any
process in the group executes this statement for the
number of times specified by expression.

$countthread expression Sets a thread-level countdown breakpoint.
When any thread in a process executes this
statement for the number of times specified by
expression, the thread stops. Other threads in the
process continue to execute.
If the target system cannot stop an individual thread,
this statement performs the same as $countprocess.
A thread evaluates expression when it executes $count
for the first time. This expression must evaluate to a
positive integer. When TotalView first encounters this
variable, it determines a value for expression. TotalView
does not reevaluate until the expression actually
stops the thread. This means that TotalView ignores
changes in the value of expression until it hits the
breakpoint. After the breakpoint occurs, TotalView
reevaluates the expression and sets a new value for
this statement.
The internal counter is stored in the process and
shared by all threads in that process.

Using Built-in Variables and Statements

398 Chapter 17: Evaluating Expressions

$hold
$holdprocess

Holds the current process.
If all other processes in the group are already held at
this eval point, TotalView releases all of them. If other
processes in the group are running, they continue to
run.

$holdstopall
$holdprocessstopall

Like $hold, except that any processes in the group
which are running are stopped. The other processes in
the group are not automatically held by this call—
they are just stopped.

$holdthread Freezes the current thread, leaving other threads
running.

$holdthreadstop
$holdthreadstopprocess

Like $holdthread, except that it stops the process.
The other processes in the group are left running.

$holdthreadstopall Like $holdthreadstop, except that it stops the entire
group.

$stop
$stopprocess

Sets a process-level breakpoint. The process that
executes this statement stops; other processes in
the control group continue to execute.

$stopall Sets a program-group-level breakpoint. All processes
in the control group stop when any thread or process
in the group executes this statement.

$stopthread Sets a thread-level breakpoint. Although the thread
that executes this statement stops, all other threads
in the process continue to execute. If the target
system cannot stop an individual thread, this
statement performs the same as to $stopprocess.

$visualize(expression[,slice]) Visualizes the data specified by expression and
modified by the optional slice value. Expression and
slice must be expressed using the code fragment’s
language. The expression must return a dataset (after
modification by slice) that can be visualized. slice is a
quoted string that contains a slice expression. For
more information on using $visualize in an
expression, see “Using the Visualizer” on page 188.

Statement Use

TotalView Users Guide: version 8.8 399

Glossary

ACTION POINT: A debugger feature that lets a user request that program
execution stop under certain conditions. Action points include break-
points, watchpoints, eval points, and barriers.

ACTION POINT IDENTIFIER: A unique integer ID associated with an action
point.

ACTIVATION RECORD: See stack frame.

ADDRESS SPACE: A region of memory that contains code and data from a
program. One or more threads can run in an address space. A process nor-
mally contains an address space.

ADDRESSING EXPRESSION: A set of instructions that tell TotalView where to
find information. These expressions are only used within the type transforma-
tion facility on page 412.

AFFECTED P/T SET: The set of process and threads that are affected by the
command. For most commands, this is identical to the target P/T set, but
in some cases it might include additional threads. (See “p/t (process/thread)
set” on page 407 for more information.)

AGGREGATE DATA: A collection of data elements. For example, a structure
or an array is an aggregate.

AGGREGATED OUTPUT: The CLI compresses output from multiple threads
when they would be identical except for the P/T identifier.

API: Application Program Interface. The formal interface by which programs
communicate with libraries.

ARENA: A specifier that indicates the processes, threads, and groups upon
which a command executes. Arena specifiers are p (process), t (thread), g
(group), d (default), and a (all).

ARRAY SECTION: In Fortran, a portion of an array that is also an array. The
elements of this array is a new unnamed array object with its own indices.
Compare this with a TotalView array slice on page 400.

400 Glossary

ARRAY SLICE: A subsection of an array, which is expressed in terms of a lower
bound on page 405, upper bound on page 412, and stride on page 410. Dis-
playing a slice of an array can be useful when you are working with very
large arrays. Compare this with a TotalView array section on page 399.

ASYNCHRONOUS: When processes communicate with one another, they
send messages. If a process decides that it doesn’t want to wait for an
answer, it is said to run “asynchronously.” For example, in most client/
server programs, one program sends an RPC request to a second program
and then waits to receive a response from the second program. This is the
normal synchronous mode of operation. If, however, the first program sends
a message and then continues executing, not waiting for a reply, the first
mode of operation is said to be asynchronous.

ATTACH: The ability for TotalView to gain control of an already running pro-
cess on the same machine or a remote machine.

AUTOLAUNCHING: When a process begins executing on a remote computer,
TotalView can also launch a tvdsvr (TotalView Debugger Server) process on
the computer that will send debugging information back to the TotalView
process that you are interacting with.

AUTOMATIC PROCESS ACQUISITION: TotalView automatically detects the
many processes that parallel and distributed programs run in, and attaches
to them automatically so you don’t have to attach to them manually. If the
process is on a remote computer, automatic process acquisition automati-
cally starts the TotalView Debugger Server (tvdsvr).

BARRIER POINT: An action point specifying that processes reaching a partic-
ular location in the source code should stop and wait for other processes
to catch up.

BASE WINDOW: The original Process Window or Variable Window before you
dive into routines or variables. After diving, you can use a Reset or Undive
command to restore this original window.

BLOCKED: A thread state in which the thread is no longer executing because
it is waiting for an event to occur. In most cases, the thread is blocked
because it is waiting for a mutex or condition state.

BREAKPOINT: A point in a program where execution can be suspended to
permit examination and manipulation of data.

BUG: A programming error. Finding them is why you’re using TotalView.

BULK LAUNCH: A TotalView procedure that launches multiple tvdsvr pro-
cesses simultaneously.

CALL FRAME: The memory area that contains the variables belonging to a
function, subroutine, or other scope division, such as a block.

CALL STACK: A higher-level view of stack memory, interpreted in terms of
source program variables and locations. This is where your program places
stack frames.

CALLBACK: A function reference stored as a pointer. By using the function
reference, this function can be invoked. For example, a program can hand

TotalView Users Guide: version 8.8 401

off the function reference to an event processor. When the event occurs,
the function can be called.

CHILD PROCESS: A process created by another process (see “parent process”
on page 407) when that other process calls the fork() function.

CLOSED LOOP: See closed loop on page 401.

CLUSTER DEBUGGING: The action of debugging a program that is running on
a cluster of hosts in a network. Typically, the hosts are of the same type and
have the same operating system version.

COMMAND HISTORY LIST: A debugger-maintained list that stores copies of
the most recent commands issued by the user.

CONDITION SYNCHRONIZATION: A process that delays thread execution until
a condition is satisfied.

CONDITIONAL BREAKPOINT: A breakpoint containing an expression. If the
expression evaluates to true, program stops. TotalView does not have con-
ditional breakpoints. Instead, you must explicitly tell TotalView to end exe-
cution by using the $stop directive.

CONTEXT SWITCHING: In a multitasking operating system, the ability of the
CPU to move from one task to another. As a switch is made, the operating
system must save and restore task states.

CONTEXTUALLY QUALIFIED (SYMBOL): A symbol that is described in terms of
its dynamic context, rather than its static scope. This includes process
identifier, thread identifier, frame number, and variable or subprocedure
name.

CONTROL GROUP: All the processes that a program creates. These pro-
cesses can be local or remote. If your program uses processes that it did
not create, TotalView places them in separate control groups. For example,
a client/server program has two distinct executables that run indepen-
dently of one another. Each would be in a separate control group. In con-
trast, processes created by the fork() function are in the same control
group.

CORE FILE: A file that contains the contents of memory and a list of thread
registers. The operating system dumps (creates) a core file whenever a pro-
gram exits because of a severe error (such as an attempt to store into an
invalid address).

CORE-FILE DEBUGGING: A debugging session that examines a core file
image. Commands that modify program state are not permitted in this
mode.

CPU: Central Processing Unit. The component within the computer that
most people think of as “the computer”. This is where computation and
activities related to computing occur.

CROSS-DEBUGGING: A special case of remote debugging where the host
platform and the target platform are different types of machines.

402 Glossary

CURRENT FRAME: The current portion of stack memory, in the sense that it
contains information about the subprocedure invocation that is currently
executing.

CURRENT LANGUAGE: The source code language used by the file that con-
tains the current source location.

CURRENT LIST LOCATION: The location governing what source code appears
in response to a list command.

DATASET: A set of array elements generated by TotalView and sent to the
Visualizer. (See visualizer process on page 412.)

DBELOG LIBRARY: A library of routines for creating event points and gener-
ating event logs from TotalView. To use event points, you must link your
program with both the dbelog and elog libraries.

DBFORK LIBRARY: A library of special versions of the fork() and execve() calls
used by TotalView to debug multi-process programs. If you link your pro-
gram with the TotalView dbfork library, TotalView can automatically attach
to newly spawned processes.

DEADLOCK: A condition where two or more processes are simultaneously
waiting for a resource such that none of the waiting processes can execute.

DEBUGGING INFORMATION: Information relating an executable to the source
code from which it was generated.

DEBUGGER PROMPT: A string printed by the CLI that indicates that it is
ready to receive another user command.

DEBUGGER SERVER: See tvdsvr process on page 412.

DEBUGGER STATE: Information that TotalView or the CLI maintains to inter-
pret and respond to user commands. This includes debugger modes, user-
defined commands, and debugger variables.

DEPRECATED: A feature that is still available but might be eliminated in a
future release.

DISASSEMBLED CODE: A symbolic translation of binary code into assembler
language.

DISTRIBUTED DEBUGGING: The action of debugging a program that is run-
ning on more than one host in a network. The hosts can be homogeneous
or heterogeneous. For example, programs written with message-passing
libraries such as Parallel Virtual Machine (PVM) or Parallel Macros (PAR-
MACS), run on more than one host.

DIVING: The action of displaying more information about an item. For
example, if you dive into a variable in TotalView, a window appears with
more information about the variable.

DLL: Dynamic Link Library. A shared library whose functions can be dynami-
cally added to a process when a function with the library is needed. In con-
trast, a statically linked library is brought into the program when it is cre-
ated.

TotalView Users Guide: version 8.8 403

DOPE VECTOR: This is a run time descriptor that contains all information
about an object that requires more information than is available as a single
pointer or value. For example, you might declare a Fortran 90 pointer vari-
able that is a pointer to some other object, but which has its own upper
bound, as follows:

integer, pointer, dimension (:) :: iptr

Suppose that you initialize it as follows:

iptr => iarray (20:1:-2)

iptr is a synonym for every other element in the first twenty elements of
iarray, and this pointer array is in reverse order. For example, iptr(1) maps
to iarray(20), iptr(2) maps to iarray(18), and so on.

A compiler represents an iptr object using a run time descriptor that con-
tains (at least) elements such as a pointer to the first element of the actual
data, a stride value, and a count of the number of elements (or equiva-
lently, an upper bound).

DPID: Debugger ID. This is the ID TotalView uses for processes.

DYNAMIC LIBRARY: A library that uses dynamic loading to load information
in an external file at runtime. Dynamic loading implies dynamic linking,
which is a process that does not copy a program and its data into the exe-
cutable at compile time. For more information, see http://en.wikipedia.org/
wiki/Dynamic_linking.

EDITING CURSOR: A black line that appears when you select a TotalView GUI
field for editing. You use field editor commands to move the editing cursor.

EVAL POINT: A point in the program where TotalView evaluates a code frag-
ment without stopping the execution of the program.

EVENT LOG: A file that contains a record of events for each process in a
program.

EVENT POINT: A point in the program where TotalView writes an event to the
event log for later analysis with TimeScan.

EXCEPTION: A condition generated at runtime that indicates that a non-
standard event has occurred. The program usually creates a method to
handle the event. If the event is not handled, either the program's result
will be inaccurate or the program will stop executing.

EXECUTABLE: A compiled and linked version of source files

EXPRESSION SYSTEM: A part of TotalView that evaluates C, C++, and For-
tran expressions. An expression consists of symbols (possibly qualified),
constants, and operators, arranged in the syntax of a source language. Not
all Fortran 90, C, and C++ operators are supported.

EXTENT: The number of elements in the dimension of an array. For example,
a Fortran array of integer(7,8) has an extent of 7 in one dimension (7 rows)
and an extent of 8 in the other dimension (8 columns).

FIELD EDITOR: A basic text editor that is part of TotalView. The field editor
supports a subset of GNU Emacs commands.

404 Glossary

FOCUS: The set of groups, processes, and threads upon which a CLI com-
mand acts. The current focus is indicated in the CLI prompt (if you’re using
the default prompt).

FRAME: An area in stack memory that contains the information corre-
sponding to a single invocation of a subprocedure. See stack frame on page
410.

FRAME POINTER: See stack pointer on page 410.

FULLY QUALIFIED (SYMBOL): A symbol is fully qualified when each level of
source code organization is included. For variables, those levels are execut-
able or library, file, procedure or line number, and variable name.

GARBAGE COLLECTION: Examining memory to determine if it is still be refer-
enced. If it is not, it sent back to the program's memory manager so that it
can be reused.

GID: The TotalView group ID.

GLOBAL ARRAYS: (from a definition on the Global Arrays web site) The Glo-
bal Arrays (GA) toolkit provides an efficient and portable “shared-memory”
programming interface for distributed-memory computers. Each process in
a MIMD parallel program can asynchronously access logical blocks of phys-
ically distributed dense multi-dimensional arrays, without need for explicit
cooperation by other processes. For more information, see http://
www.emsl.pnl.gov/docs/global/.

GRID: A collection of distributed computing resources available over a local
or wide area network that appears as if it were one large virtual computing
system.

GOI: The group of interest. This is the group that TotalView uses when it is
trying to determine what to step, stop, and so on.

GROUP: When TotalView starts processes, it places related processes in
families. These families are called “groups.”

GROUP OF INTEREST: The primary group that is affected by a command. This
is the group that TotalView uses when it is trying to determine what to step,
stop, and so on.

HEAP: An area of memory that your program uses when it dynamically allo-
cates blocks of memory. It is also how people describe my car.

HOST COMPUTER: The computer on which TotalView is running.

IMAGE: All of the programs, libraries, and other components that make up
your executable.

INFINITE LOOP: See loop, infinite on page 405.

INSTRUCTION POINTER: See program counter.

INITIAL PROCESS: The process created as part of a load operation, or that
already existed in the runtime environment and was attached by TotalView
or the CLI.

TotalView Users Guide: version 8.8 405

INITIALIZATION FILE: An optional file that establishes initial settings for
debugger state variables, user-defined commands, and any commands that
should be executed whenever TotalView or the CLI is invoked. Must be
called .tvdrc.

INTERPRETER: A program that reads programming language statements and
translates the statements into machine code, then executes this code.

LAMINATE: A process that combines variables contained in separate pro-
cesses or threads into a unified array for display purposes.

LHS EXPRESSION: This is a synonym for lvalue.

LINKER. A program that takes all the object files creates by the compiler and
combines them and libraries required by the program into the executable
program.

LOCKSTEP GROUP: All threads that are at the same PC (program counter).
This group is a subset of a workers group. A lockstep group only exists for
stopped threads. All threads in the lockstep group are also in a workers
group. By definition, all members of a lockstep group are in the same work-
ers group. That is, a lockstep group cannot have members in more than
one workers group or more than one control group.

LOOP, INFINITE: see infinite loop on page 404.

LOWER BOUND: The first element in the dimension of an array or the slice of
an array. By default, the lower bound of an array is 0 in C and 1 in Fortran,
but the lower bound can be any number, including negative numbers.

LVALUE: A symbol name or expression suitable for use on the left-hand
side of an assignment statement in the corresponding source language.
That is, the expression must be appropriate as the target of an assignment.

MACHINE STATE: Convention for describing the changes in memory, regis-
ters, and other machine elements as execution proceeds.

MANAGER THREAD: A thread created by the operating system. In most
cases, you do not want to manage or examine manager threads.

MESSAGE QUEUE: A list of messages sent and received by message-passing
programs.

MIMD: An acronym for Multiple Instruction, Multiple Data, which describes
a type of parallel computing.

MISD: An acronym for Multiple Instruction, Single Data, which describes a
type of parallel computing.

MPI: An acronym for “Message Passing Interface.”

MPICH: MPI/Chameleon (Message Passing Interface/Chameleon) is a freely
available and portable MPI implementation. MPICH was written as a collab-
oration between Argonne National Lab and Mississippi State University. For
more information, see http://www.mcs.anl.gov/mpi.

MPMD PROGRAMS: An acronym for Multiple Program, Multiple Data, which
describes programs that involve multiple executables, executed by multiple
threads and processes.

406 Glossary

MULTITASK: In the context of high performance computing, this is the abil-
ity to divide a program into smaller pieces or tasks that execute separately.

MULTI-PROCESS: The ability of a program to spawn off separate programs,
each having its own context and memory. multi-process programs can (and
most often do) run processes on more than one computer. They can also
run multiple processes an one computer. In this case, memory can be
shared

MULTI-THREADED: The ability of a program to spawn off separate tasks that
use the same memory. Switching from task to task is controlled by the
operating system.

MUTEX (MUTUAL EXCLUSION): Techniques for sharing resources so that dif-
ferent users do not conflict and cause unwanted interactions.

NATIVE DEBUGGING: The action of debugging a program that is running on
the same machine as TotalView.

NESTED DIVE: TotalView lets you dive into pointers, structures, or arrays in a
variable. When you dive into one of these elements, TotalView updates the
display so that the new element appears. A nested dive is a dive within a
dive. You can return to the previous display by selecting the left arrow in
the top-right corner of the window.

NODE: A machine on a network. Each machine has a unique network name
and address.

OFF-BY-ONE: An error usually caused by forgetting that arrays begin with
element 0 in C and C++.

OPENMP: (from a definition on the OpenMP web site) OpenMP is a specifi-
cation for a set of compiler directives, library routines, and environment
variables that can be used to specify shared memory parallelism in Fortran
and C/C++ programs. The MP in OpenMP stands for Multi Processing. We
provide Open specifications for Multi Processing via collaborative work
with interested parties from the hardware and software industry, govern-
ment and academia. For more information, see http://www.openmp.org/.

OUT-OF-SCOPE: When symbol lookup is performed for a particular symbol
name and it isn’t found in the current scope or any that contains scopes,
the symbol is said to be out-of-scope.

PAGE PROTECTION: The ability to segregate memory pages so that one pro-
cess cannot access pages owned by another process. It can also be used
to generate an exception when a process tries to access the page.

PARALLEL PROGRAM: A program whose execution involves multiple threads
and processes.

PARALLEL TASKS: Tasks whose computations are independent of each
other, so that all such tasks can be performed simultaneously with correct
results.

PARALLELIZABLE PROBLEM: A problem that can be divided into parallel
tasks. This type of program might require changes in the code and/or the
underlying algorithm.

TotalView Users Guide: version 8.8 407

PARCEL: The number of bytes required to hold the shortest instruction for
the target architecture.

PARENT PROCESS: A process that calls the fork() function to spawn other
processes (usually called child processes).

PARMACS LIBRARY: A message-passing library for creating distributed pro-
grams that was developed by the German National Research Centre for
Computer Science.

PARTIALLY QUALIFIED (SYMBOL): A symbol name that includes only some of
the levels of source code organization (for example, file name and proce-
dure, but not executable). This is permitted as long as the resulting name
can be associated unambiguously with a single entity.

PATCHING: Inserting code in a breakpoint that is executed immediately pre-
ceding the breakpoint's line. The patch can contain a GOTO command to
branch around incorrect code.

PC: An abbreviation for Program Counter.

PID: Depending on the context, this is either the process ID or the program
ID. In most cases, this is the process ID.

POI: The process of interest. This is the process that TotalView uses when it
is trying to determine what to step, stop, and so on.

/PROC: An interface that allows debuggers and other programs to control or
obtain information from running processes. ptrace also does this, but /proc
is more general.

PROCESS: An executable that is loaded into memory and is running (or
capable of running).

PROCESS GROUP: A group of processes associated with a multi-process pro-
gram. A process group includes program control groups and share groups.

PROCESS/THREAD IDENTIFIER: A unique integer ID associated with a particu-
lar process and thread.

PROCESS OF INTEREST: The primary process that TotalView uses when it is
trying to determine what to step, stop, and so on.

PROGRAM CONTROL GROUP: A group of processes that includes the parent
process and all related processes. A program control group includes chil-
dren that were forked (processes that share the same source code as the
parent), and children that were forked with a subsequent call to the
execve() function (processes that don’t share the same source code as the
parent). Contrast this with share group on page 409.

PROGRAM EVENT: A program occurrence that is being monitored by
TotalView or the CLI, such as a breakpoint.

PROGRAM STATE: A higher-level view of the machine state, where
addresses, instructions, registers, and such are interpreted in terms of
source program variables and statements.

P/T (PROCESS/THREAD) SET: The set of threads drawn from all threads in all
processes of the target program.

408 Glossary

PTHREAD ID: This is the ID assigned by the Posix pthreads package. If this
differs from the system TID, it is a pointer value that points to the pthread
ID.

PVM LIBRARY: Parallel Virtual Machine library. A message-passing library for
creating distributed programs that was developed by the Oak Ridge
National Laboratory and the University of Tennessee.

QUEUE: A data structure whose data is accessed in the order in which it was
entered. This is like a line at a tollbooth where the first in is the first out.

RACE CONDITION: A problem that occurs when threads try to simulta-
neously access a resource. The result can be a deadlock, data corruption,
or a program fault.

REMOTE DEBUGGING: The action of debugging a program that is running on
a different machine than TotalView. The machine on which the program is
running can be located many miles away from the machine on which
TotalView is running.

RESUME COMMANDS: Commands that cause execution to restart from a
stopped state: dstep, dgo, dcont, dwait.

RHS EXPRESSION: This is a synonym for rvalue.

RVALUE: An expression suitable for inclusion on the right-hand side of an
assignment statement in the corresponding source language. In other
words, an expression that evaluates to a value or collection of values.

SATISFACTION SET: The set of processes and threads that must be held
before a barrier can be satisfied.

SATISFIED: A condition that indicates that all processes or threads in a
group have reached a barrier. Prior to this event, all executing processes
and threads are either running because they have not yet hit the barrier, or
are being held at the barrier because not all of the processes or threads
have reached it. After the barrier is satisfied, the held processes or threads
are released, which means they can be run. Prior to this event, they could
not run.

SCOPE: The region in your program in which a variable or a function exists
or is defined. This region begins with its declaration and extends to the end
of the current block.

SEARCH PATH: A list that contains places that software looks to locate files
contained within the file system. In TotalView, the search path contains
locations containing your program’s source code.

SERIAL EXECUTION: Execution of a program sequentially, one statement at a
time.

SERIAL LINE DEBUGGING: A form of remote debugging where TotalView and
the tvdsvr communicate over a serial line.

SERVICE THREAD: A thread whose purpose is to service or manage other
threads. For example, queue managers and print spoolers are service

TotalView Users Guide: version 8.8 409

threads. There are two kinds of service threads: those created by the oper-
ating system or runtime system and those created by your program.

SHARE GROUP: All the processes in a control group that share the same
code. In most cases, your program has more than one share group. Share
groups, like control groups, can be local or remote.

SHARED LIBRARY: A compiled and linked set of source files that are dynami-
cally loaded by other executables.

SIGNALS: Messages informing processes of asynchronous events, such as
serious errors. The action that the process takes in response to the signal
depends on the type of signal and whether the program includes a signal
handler routine, a routine that traps certain signals and determines appro-
priate actions to be taken by the program.

SIMD: An acronym for Single Instruction, Multiple Data, which describes a
type of parallel computing.

SINGLE PROCESS SERVER LAUNCH: A TotalView procedure that individually
launches tvdsvr processes.

SINGLE STEP: The action of executing a single statement and stopping (as if
at a breakpoint).

SISD: An acronym for Single Instruction, Single Data, which describes a
type of parallel computing.

SLICE: A subsection of an array, which is expressed in terms of a lower bound
on page 405, upper bound on page 412, and stride on page 410. Displaying a
slice of an array can be useful when you are working with very large arrays.
Compare this with a TotalView array section on page 399.

SOID: An acronym for symbol object ID. A SOID uniquely identifies all
TotalView information. It also represents a handle by which you can access
this information.

SOURCE FILE: Program file that contains source language statements.
TotalView lets you debug FORTRAN 77, Fortran 90, Fortran 95, C, C++,
and assembler files.

SOURCE LOCATION: For each thread, the source code line it executes next.
This is a static location, indicating the file and line number; it does not,
however, indicate which invocation of the subprocedure is involved.

SPAWNED PROCESS: The process created by a user process executing under
debugger control.

SPMD PROGRAMS: An acronym for Single Program, Multiple Data, which
describe a type of parallel computing that involves just one executable,
executed by multiple threads and processes.

STACK: A portion of computer memory and registers used to hold informa-
tion temporarily. The stack consists of a linked list of stack frames that
holds return locations for called routines, routine arguments, local vari-
ables, and saved registers.

410 Glossary

STACK FRAME: Whenever your program calls a function, it creates a set of
information that includes the local variables, arguments, contents of the
registers used by an individual routine, a frame pointer pointing to the pre-
vious stack frame, and the value of the program counter (PC) at the time
the routine was called. The information for one function is called a “stack
frame” as it is placed on your program’s stack.

When your program begins executing, it has only one frame: the one allo-
cated for function main(). As your program calls functions, new frames are
allocated. When a function returns to the function from which it is called,
the frame is deallocated.

STACK POINTER: A pointer to the area of memory where subprocedure argu-
ments, return addresses, and similar information is stored. This is also
called a frame pointer.

STACK TRACE: A sequential list of each currently active routine called by a
program, and the frame pointer that points to its stack frame.

STATIC (SYMBOL) SCOPE: A region of a program’s source code that has a set
of symbols associated with it. A scope can be nested inside another scope.

STEPPING: Advancing program execution by fixed increments, such as by
source code statements.

STL: An acronym for Standard Template Library.

STOP SET: A set of threads that TotalView stops after an action point
triggers.

STOPPED/HELD STATE: The state of a process whose execution has paused
in such a way that another program event (for example, arrival of other
threads at the same barrier) is required before it is capable of continuing
execution.

STOPPED/RUNNABLE STATE: The state of a process whose execution has
been paused (for example, when a breakpoint triggered or due to some
user command) but can continue executing as soon as a resume command
is issued.

STOPPED STATE: The state of a process that is no longer executing, but will
eventually execute again. This is subdivided into stopped/runnable and
stopped/held.

STRIDE: The interval between array elements in a slice and the order in
which TotalView displays these elements. If the stride is 1, TotalView dis-
plays every element between the lower bound and upper bound of the
slice. If the stride is 2, TotalView displays every other element. If the stride
is –1, TotalView displays every element between the upper bound and lower
bound (reverse order).

SYMBOL: Entities within program state, machine state, or debugger state.

SYMBOL LOOKUP: Process whereby TotalView consults its debugging infor-
mation to discover what entity a symbol name refers to. Search starts with
a particular static scope and occurs recursively so that contains scopes are
searched in an outward progression.

TotalView Users Guide: version 8.8 411

SYMBOL NAME: The name associated with a symbol known to TotalView (for
example, function, variable, data type, and so on).

SYMBOL TABLE: A table of symbolic names used in a program (such as vari-
ables or functions) and their memory locations. The symbol table is part of
the executable object generated by the compiler (with the –g option) and is
used by debuggers to analyze the program.

SYNCHRONIZATION: A mechanism that prevents problems caused by con-
current threads manipulating shared resources. The two most common
mechanisms for synchronizing threads are mutual exclusion and condition syn-
chronization.

TARGET COMPUTER: The computer on which the process to be debugged is
running.

TARGET PROCESS SET: The target set for those occasions when operations
can only be applied to entire processes, not to individual threads in a pro-
cess.

TARGET PROGRAM: The executing program that is the target of debugger
operations.

TARGET P/T SET: The set of processes and threads that a CLI command acts
on.

TASK: A logically discrete section of computational work. (This is an infor-
mal definition.)

THREAD: An execution context that normally contains a set of private regis-
ters and a region of memory reserved for an execution stack. A thread runs
in an address space.

THREAD EXECUTION STATE: The convention of describing the operations
available for a thread, and the effects of the operation, in terms of a set of
predefined states.

THREAD OF INTEREST: The primary thread affected by a command. This is
abbreviated as TOI.

TID: The thread ID. On some systems (such as AIX where the threads have
no obvious meaning), TotalView uses its own IDs.

TLA: An acronym for Three-Letter Acronym. So many things from computer
hardware and software vendors are referred to by a three-letter acronym
that yet another acronym was created to describe these terms.

TOI: The thread of interest. This is the primary thread affected by a com-
mand.

TRIGGER SET: The set of threads that can trigger an action point (that is, the
threads upon which the action point was defined).

TRIGGERS: The effect during execution when program operations cause an
event to occur (such as arriving at a breakpoint).

TTF: See type transformation facility on page 412.

412 Glossary

TRAP: An instruction that stops program execution and which allows a
debugger to gain control over your program.

TVDSVR PROCESS: The TotalView Debugger Server process, which facilitates
remote debugging by running on the same machine as the executable and
communicating with TotalView over a TCP/IP port or serial line.

TYPE TRANSFORMATION FACILITY: This is abbreviated as TTF. A TotalView
subsystem that allows you to change the way information appears. For
example, an STL vector can appear as an array.

UNDISCOVERED SYMBOL: A symbol that is referred to by another symbol.
For example, a typedef is a reference to the aliased type.

UNDIVING: The action of displaying the previous contents of a window,
instead of the contents displayed for the current dive. To undive, you click
the undive icon in the upper-right corner of the window.

UPC: (from a definition on the UPC web site) The Unified Parallel C lan-
guage, which is an extension to the C programming language that is
designed for high performance computing on large-scale parallel machines.
The language provides a uniform programming model for both shared and
distributed memory hardware. The programmer is presented with a single
shared, partitioned address space, where variables may be directly read
and written by any processor, but each variable is physically associated
with a single processor. See http://upc.nersc.gov/ for more information.

UPPER BOUND: The last element in the dimension of an array or the slice of
an array.

USER THREAD: A thread created by your program.

USER INTERRUPT KEY: A keystroke used to interrupt commands, most com-
monly defined as Ctrl+C.

VARIABLE WINDOW: A TotalView window that displays the name, address,
data type, and value of a particular variable.

VISUALIZATION: In TotalView, visualization means graphically displaying an
array’s values.

VISUALIZER PROCESS: A process that works with TotalView in a separate
window, allowing you to see a graphic representation of program array
data.

WATCHPOINT: An action point that tells TotalView to stop execution when
the value of a memory location changes.

WORKER THREAD: A thread in a workers group. These are threads created by
your program that performs the task for which you’ve written the program.

WORKERS GROUP: All the worker threads in a control group. Worker threads
can reside in more than one share group.

TotalView User Guide: version 8.8 413

Index

Symbols
scope separator character 334
#string data type 314
$address data type 318
$char data type 318
$character data type 318
$clid built-in variable 396
$code data type 299, 318, 322
$complex data type 318
$complex_16 data type 318
$complex_8 data type 318
$count built-in function 6, 370, 373,

397
$countall built-in function 397
$countthread built-in function 397
$debug assembler pseudo op 395
$denorm filter 341
$double data type 318
$double_precision data type 318
$duid built-in variable 396
$extended data type 319
$float data type 319
$hold assembler pseudo op 395
$hold built-in function 398
$holdprocess assembler pseudo op

395
$holdprocess built-in function 398
$holdprocessall built-in function 398
$holdprocessstopall assembler pseu-

do op 395
$holdstopall assembler pseudo op

395
$holdstopall built-in function 398
$holdthread assembler pseudo op 395
$holdthread built-in function 398
$holdthreadstop assembler pseudo

op 395
$holdthreadstop built-in function 398
$holdthreadstopall assembler pseudo

op 395

$holdthreadstopall built-in function
398

$holdthreadstopprocess assembler
pseudo op 395

$holdthreadstopprocess built-in func-
tion 398

$inf filter 341
$int data type 319
$integer data type 319
$integer_1 data type 319
$integer_2 data type 319
$integer_4 data type 319
$integer_8 data type 319
$is_denorm intrinsic function 342
$is_finite intrinsic function 342
$is_inf intrinsic function 342
$is_nan intrinsic function 342
$is_ndenorm intrinsic function 342
$is_ninf intrinsic function 342
$is_nnorm intrinsic function 342
$is_norm intrinsic function 342
$is_pdenorm intrinsic function 342
$is_pinf intrinsic function 342
$is_pnorm intrinsic function 342
$is_pzero intrinsic function 343
$is_qnan intrinsic function 343
$is_snan intrinsic function 343
$is_zero intrinsic function 343
$logical data type 319
$logical_1 data type 319
$logical_2 data type 319
$logical_4 data type 319
$logical_8 data type 319
$long data type 319
$long_branch assembler pseudo op

395
$long_long data type 319
$nan filter 341
$nanq filter 341
$nans filter 341
$ndenorm filter 341

$newval built-in function 380
$newval built-in variable 396
$nid built-in variable 396
$ninf filter 341
$oldval built-in function 380
$oldval built-in variable 396
$oldval watchpoint variable 380
$pdenorm filter 341
$pid built-in variable 396
$pinf filter 341
$processduid built-in variable 396
$real data type 319
$real_16 data type 319
$real_4 data type 319
$real_8 data type 319
$short data type 319
$stop assembler pseudo op 395
$stop built-in function 6, 373, 381,

398
$stopall assembler pseudo op 395
$stopall built-in function 398
$stopprocess assembler pseudo op

395
$stopprocess built-in function 398
$stopthread assembler pseudo op 395
$stopthread built-in function 398
$string data type 314, 319, 320
$systid built-in variable 396
$tid built-in variable 396
$visualize built-in function 196, 398

in animations 196
using casts 196

$void data type 319, 321
$wchar data type 319, 320
$wchar_s16 data type 319
$wchar_s32 data type 320
$wchar_u16 data type 320
$wchar_u32 data type 320
$wstring data type 320
$wstring_s16 data type 320
$wstring_s32 data type 320

A

414 TotalView User Guide: version 8.8

$wstring_u16 data type 320
$wstring_u32 data type 320
%B bulk server launch command 95
%C server launch replacement charac-

ters 92
%D bulk server launch command 94
%D single process server launch com-

mand 93
%F bulk server launch command 95
%H bulk server launch command 94
%H hostname replacement character

95
%I bulk server launch command 95
%K bulk server launch command 95
%L bulk server launch command 94
%L single process server launch com-

mand 93
%N bulk server launch command 96
%P bulk server launch command 94
%P single process server launch com-

mand 93
%R single process server launch com-

mand 92
%t1 bulk server launch command 95,

96
%t2 bulk server launch command 96
%V bulk server launch command 94
& intersection operator 277
. (dot) current set indicator 261, 278
. (period), in suffix of process names

237
.dmg installer 56
.rhosts file 97, 122
.totalview subdirectory 58
.tvdrc initialization files 58
.Xdefaults file 59, 82

autoLoadBreakpoints 82
deprecated resources 82

/ slash in group specifier 266
/usr/lib/array/arrayd.conf file 94
: (colon), in array type strings 316
: as array separator 336
< first thread indicator (CLI) 261
> (right angle bracket), indicating

nested dives 301
@ action point marker, in CLI 354
– difference operator 277
| union operator 277
‘ module separator 328

A
–a command-line option 57, 208

passing arguments to program 57
a width specifier 266

general discussion 269
absolute addresses, display assem-

bler as 176
acquiring processes 123
action

points tab 358, 359

Action Point > At Location command
5, 355, 356, 359

Action Point > Delete All command
358

Action Point > Properties command
5, 136, 240, 352, 357, 358, 361,
363, 365, 367, 369

deleting barrier points 367
Action Point > Properties dialog box

362
Action Point > Properties dialog box

figure 357, 361, 366
Action Point > Save All command

123, 382
Action Point > Save As command 382
Action Point > Set Barrier command

365
Action Point > Suppress All command

358, 359
action point files 59
action point identifiers 213

never reused in a session 213
Action Point Symbol figure 352
action points 213, 362

see also barrier points
see also eval points
common properties 352
definition 5, 351
deleting 358
disabling 358
enabling 358
evaluation points 5
ignoring 358
list of 175
multiple addresses 354
saving 382
suppressing 358
unsuppressing 359
watchpoint 10

action points list, see action points
tab

Action Points Page 133, 175
actor mode, Visualizer 185
adapter_use option 121
Add new host option 61
Add to Expression List command 9,

305, 309
Add to Expression List context menu

command 305
adding command-line arguments 67
adding environment variables 67
adding members to a group 264
adding program arguments 57
Additional starter arguments area 104
$address 318
address range conflicts 374
addresses

changing 323
editing 323
specifying in variable window 298

tracking in variable window 286
advancing and holding processes 212
advancing program execution 212
aggregates, in Expression List window

307
aliases

built-in 210
group 210
group, limitations 210

align assembler pseudo op 395
all width specifier 262
allocated arrays, displaying 323
Ambiguous Function Dialog Box 356
Ambiguous Function dialog box 359
Ambiguous Function dialog box figure

227, 357
ambiguous function names 226
Ambiguous Line dialog box figure 354,

355
ambiguous names 228
ambiguous scoping 334
ambiguous source lines 239
angle brackets, in windows 301
animation using $visualize 196
areas of memory, data type 321
arena specifiers 261

defined 261
incomplete 274
inconsistent widths 275

arenas
and scope 254
defined 254, 261
iterating over 261

ARGS variable 208
modifying 208

ARGS_DEFAULT variable 57, 208
clearing 208

arguments
in server launch command 92, 97
passing to program 57
replacing 208

argv, displaying 323
Array Data Filter by Range of Values

figure 343
array data filtering

by comparison 339
by range of values 343
for IEEE values 341
see also arrays, filtering

Array Data Filtering by Comparison fig-
ure 341

Array Data Filtering for IEEE Values fig-
ure 342

array of structures 300
displaying 302
in Expression List window 307

array pointers 295
array rank 198
array services handle (ash) 128
Array Statistics Window figure 345

B

TotalView User Guide: version 8.8 415

array structure
viewing limitations 289

arrays
array data filtering 339
bounds 316
casting 316
character 320
checksum statistic 346
colon separators 336
count statistic 346
deferred shape 329, 336
denormalized count statistic 346
display subsection 317
displaying 196, 335
displaying allocated 323
displaying argv 323
displaying contents 178
displaying declared 323
displaying multiple 196
displaying slices 336
diving into 300
editing dimension of 317
evaluating expressions 384
extent 317
filter conversion rules 340
filtering 317, 339, 340, 341
filtering expressions 343
filtering options 339
in C 316
in Fortran 316
infinity count statistic 346
limiting display 338
lower adjacent statistic 346
lower bound of slices 336
lower bounds 316
maximum statistic 346
mean statistic 346
median statistic 346
minimum statistic 346
NaN statistic 346
non-default lower bounds 316
overlapping nonexistent memory

335
pointers to 316
quartiles statistic 346
skipping elements 337
slice example 336, 337
slice, initializing 217
slice, printing 217
slice, refining 196
slices with the variable command

338
slicing 8
sorting 344
standard deviation statistic 346
statistics 345
stride 336
stride elements 336
subsections 336
sum statistic 346

type strings for 316
upper adjacent statistic 347
upper bound 316
upper bound of slices 336
viewing across elements 348
visualizing 186, 196
writing to file 219
zero count statistic 347

arrow buttons 7
arrow over line number 175
ascii assembler pseudo op 395
asciz assembler pseudo op 395
ash (array services handle 128
ash (array services handle) 128
ASM icon 353, 361
assembler

absolute addresses 176
and –g compiler option 178
constructs 392
displaying 176
examining 175
expressions 394
in code fragment 368
symbolic addresses 176

Assembler > By Address command
176

Assembler > Symbolically command
176

Assembler command 175
assigning output to variable 207
assigning p/t set to variable 263
asynchronous processing 16
at breakpoint state 70
At Location command 5, 355, 356, 359
atering standard I/O 67
Attach Page 124, 172
Attach Subset command 131, 132
Attach Subset command, when not

usable 104
Attach to an existing process option

69
Attach to process page 69
attached process states 70
attaching

commands 63
restricting 130
restricting by communicator 131
selective 130
to a task 162
to all 132
to existing process 62
to HP MPI job 120
to job 123
to MPI tasks 133
to MPICH application 108
to MPICH job 108
to none 132
to PE 123
to poe 124
to processes 63, 123, 130, 161

to PVM task 161
to RMS processes 127
to SGI MPI job 128

attaching to processes preference 133
Auto Visualize command 187
Auto Visualize, in Dataset Window 189
auto_array_cast_bounds variable 296
auto_deref_in_all_c variable 296
auto_deref_in_all_fortran variable 296
auto_deref_initial_c variable 296
auto_deref_initial_fortran variable 296
auto_deref_nested_c variable 296
auto_deref_nested_fortran variable

296
auto_save_breakpoints variable 382
autolaunch 86, 87

changing 96
defined 57
disabling 57, 87, 89, 96
launch problems 91
sequence 98

autolaunching 98
autoLoadBreakpoints .Xdefault 82
automatic dereferencing 295
automatic process acquisition 107,

121, 160
averaging data points 193
averaging surface display 193
axis, transposing 191

B
B state 70
backtick separator 328
backward icon 179
barrier points 12, 31, 233, 364, 365

see also process barrier break-
point

clearing 358
defined 213
defined (again) 364
deleting 367
htting 367
satisfying 366
states 365
stopped process 367

baud rate, for serial line 100
bit fields 313
block scoping 333
Block Status command 297
blocking send operations 118
blocks

displaying 289
naming 334

BlueGene, see IBM BlueGene 124
bluegene_io_interface variable 125
bluegene_server_launch variable 125
bold data 7
Both command 176, 251
bounds for arrays 316
boxed line number 175, 254, 354

C

416 TotalView User Guide: version 8.8

branching around code 371
Breakpoint at Assembler Instruction

figure 360
breakpoint files 59
breakpoint operator 277
breakpoints

and MPI_Init() 123
apply to all threads 352
automatically copied from master

process 107
behavior when reached 361
changing for parallelization 133
clearing 170, 254, 358
conditional 368, 370, 397
copy, master to slave 108
countdown 370, 397
default stopping action 133
defined 213, 351
deleting 358
disabling 358
enabling 358
entering 128
example setting in multiprocess

program 364
fork() 363
hitting within eval point 392
ignoring 358
in child process 361
in parent process 361
in spawned process 160
listing 175
machine-level 360
multiple processes 361
not shared in separated children

363
placing 175
reloading 123
removed when detaching 65
removing 170
saving 382
set while a process is running 354
set while running parallel tasks 122
setting 122, 170, 220, 254, 353,

354, 361
shared by default in processes 363
sharing 362, 363
stop all related processes 362
suppressing 358
thread-specific 397
toggling 355
while stepping over 242

bss assembler pseudo op 395
built-in aliases 210
built-in functions

$count 6, 370, 373, 397
$countall 397
$countthread 397
$hold 398
$holdprocess 398
$holdprocessall 398

$holdstopall 398
$holdthread 398
$holdthreadstop 398
$holdthreadstopall 398
$holdthreadstopprocess 398
$stop 6, 373, 381, 398
$stopall 398
$stopprocess 398
$stopthread 398
$visualize 196, 398
forcing interpretation 372

built-in variables 396
$clid 396
$duid 396
$newval 396
$nid 396
$oldval 396
$pid 396
$processduid 396
$string 317
$systid 396
$tid 396
forcing interpretation 397

Bulk Launch page 91
bulk server launch 86, 89

command 89
connection timeout 90
on HP Alpha 95
on IBM RS/6000 96
on Cray 95
on SGI MIPS 94

bulk server launch command
%B 95
%D 94
%F 95
%H 94
%I 95
%K 95
%L 94
%N 96
%P 94
%t1 95, 96
%t2 96
%V 94
–callback_host 94
–callback_ports 94
–set_pws 94
–verbosity 94
–working_directory 94

bulk_incr_timeout variable 90
bulk_launch_base_timeout variable 90
bulk_launch_enabled variable 89, 91
bulk_launch_incr_timeout variable 90
bulk_launch_string variable 90
bulk_launch_tmpfile1_header_ line

variable 90
bulk_launch_tmpfile1_header_line

variable 90
bulk_launch_tmpfile1_host_line vari-

able 90

bulk_launch_tmpfile1_host_lines vari-
able 90

bulk_launch_tmpfile1_trailer_ line
variable 90

bulk_launch_tmpfile1_trailer_line vari-
able 90

bulk_launch_tmpfile2_header_ line
variable 90

bulk_launch_tmpfile2_header_line
variable 90

bulk_launch_tmpfile2_host_ lines
variable 90

bulk_launch_tmpfile2_host_line vari-
able 90

bulk_launch_tmpfile2_trailer_ line
variable 90

bulk_launch_tmpfile2_trailer_line vari-
able 90

By Address command 176
byte assembler pseudo op 395

C
C casting for Global Arrays 155, 156
C control group specifier 266, 267
C++

changing class types 325
display classes 324

C++/C++
in expression system 387

C/C++
array bounds 316
arrays 316
filter expression 343
how data types are displayed 314
in code fragment 368
type strings supported 314

C/C++ statements
expression system 388

Call Graph command 183
call graph, updating display 183
call stack 174
call_graph group 184
–callback command-line option 97
–callback_host bulk server launch

command 94
–callback_option single process server

launch command 93
–callback_ports bulk server launch

command 94
camera mode, Visualizer 185
capture command 207
casting 303, 313, 314, 315

examples 322
to type $code 299
types of variable 313

casting arrays 316
casting Global Arrays 155, 156
Cell broadband engine 144

CLI focus within SPU 149
CLI variables named 147

C

TotalView User Guide: version 8.8 417

context 144
description 145
empty context 144
loading SPU images 144
PPE defined 144
PPU defined 144
PPU organization 146
share groups 145
SPE defined 144
SPU breakpoints 147
SPU defined 144
SPU images, loading 144
SPU naming in TotalView 146
SPU registers 149
SPU threads 146
SPU threads share group 146
synergistic processor unit 144
thread IDs 147
union describing SPU register con-

tents 149
CGROUP variable 264, 270
ch_lfshmem device 106
ch_mpl device 106
ch_p4 device 106, 108, 135
ch_shmem device 106, 108
Change Value command 312
changing autolaunch options 87
changing command-line arguments 67
changing expressions 304
changing precision 284
changing process thread set 260
changing processes 232
changing program state 203
changing remote shell 97
changing size 284
changing threads 232
changing threads in Variable Window

300
changing values 180
changing variables 312
$char data type 318
$character data type 318
character arrays 320
chasing pointers 295, 300
checksum array statistic 346
child process names 237
classes, displaying 324
Clear All STOP and EVAL command

358
clearing

breakpoints 170, 254, 358, 361
continuation signal 245
evaluation points 170

CLI
components 201
in startup file 204
initialization 204
interface 203
introduced 14

invoking program from shell exam-
ple 204

not a library 201
output 207
prompt 205
relationship to TotalView 202
starting 55, 56, 203
starting from command prompt

203
starting from TotalView GUI 203
starting program using 205

CLI and Tcl relationship 203
CLI commands

assigning output to variable 207
capture 207
dactions 352
dactions –load 123, 382
dactions –save 123, 382
dassign 312
dattach 57, 63, 64, 66, 108, 123,

124, 130, 212
dattach mprun 130
dbarrier 364, 366
dbarrier –e 369
dbarrier –stop_when_hit 136
dbreak 221, 354, 356, 362
dbreak –e 369
dcheckpoint 246
ddelete 112, 356, 358, 367
ddetach 65
ddisable 358, 367
ddlopen 247
ddown 243
default focus 260
denable 358, 359
dfocus 241, 259, 260
dga 156
dgo 119, 122, 123, 128, 134, 238,

275
dgroups –add 264, 270
dhalt 134, 231, 241
dhold 234, 365
dhold –thread 234
dkill 135, 206, 212, 245
dload 63, 92, 205, 206, 212
dnext 134, 239, 242
dnexti 239, 242
dout 243, 255
dprint 140, 142, 218, 227, 252,

286, 287, 295, 298, 317, 323,
326, 327, 329, 336, 338

dptsets 69, 232
drerun 206, 245
drestart 246
drun 205, 208
dset 208, 210
dstatus 69, 367
dstep 134, 239, 242, 255, 261,

263, 275
dstepi 239, 242

dunhold 234, 365
dunhold –thread 234
dunset 208
duntil 243, 255, 257
dup 243, 287
dwhere 262, 275, 287
exit 60
read_symbols 250
run when starting TotalView 59

CLI variables
ARGS 208
ARGS, modifying 208
ARGS_DEFAULT 57, 208

clearing 208
auto_array_cast_bounds 296
auto_deref_in_all_c 296
auto_deref_in_all_fortran 296
auto_deref_initial_c 296
auto_deref_initial_fortran 296
auto_deref_nested_c 296
auto_deref_nested_fortran 296
auto_save_breakpoints 382
bulk_incr_timeout 90
bulk_launch_base_timeout 90
bulk_launch_enabled 89, 91
bulk_launch_incr_timeout 90
bulk_launch_string 90
bulk_launch_tmpefile1_trailer_

line 90
bulk_launch_tmpefile2_trailer_

line 90
bulk_launch_tmpfile1_header_

line 90
bulk_launch_tmpfile1_header_line

90
bulk_launch_tmpfile1_host_ lines

90
bulk_launch_tmpfile1_host_line

90
bulk_launch_tmpfile1_trailer_line

90
bulk_launch_tmpfile2_header_

line 90
bulk_launch_tmpfile2_header_line

90
bulk_launch_tmpfile2_host_line

90
bulk_launch_tmpfile2_host_lines

90
bulk_launch_tmpfile2_trailer_line

90
data format 284
dll_read_all_symbols 250
dll_read_loader_symbols_only

250
dll_read_no_symbols 250
dpvm 159
EXECUTABLE_PATH 61, 73, 75,

158, 216
LINES_PER_SCREEN 208

C

418 TotalView User Guide: version 8.8

parallel_attach 133
parallel_stop 133
pop_at_breakpoint 72
pop_on_error 72
process_load_callbacks 59
PROMPT 210
pvm 159
server_launch_enabled 88, 91, 96
server_launch_string 88
server_launch_timeout 88
SHARE_ACTION_POINT 358, 362,

363
signal_handling_mode 71
STOP_ALL 358, 362
suffixes 54
ttf 283
warn_step_throw 72

$clid built-in variable 396
Close command 179, 300
Close command (Visualizer) 189
Close Relatives command 179
Close Similar command 179, 300
Close, in dataset window 189
closed loop, see closed loop
closing similar windows 179
closing variable windows 300
closing windows 179
cluster ID 396
$code data type 318
code constructs supported

assembler 392
C/C++ 387
Fortran 389

$code data type 299, 322
code fragments 368, 392, 396

modifying instruction path 368
when executed 368
which programming languages 368

code, branching around 371
collapsing structures 289
colons as array separators 336
colors used 231
columns, displaying 310
comm assembler pseudo op 395
command arguments 208

clearing example 208
passing defaults 208
setting 208

Command Line command 55, 203
Command Line Interpreter 14
command prompts 209

default 209
format 209
setting 210
starting the CLI from 203

command scope 333
command-line options 206

–a 57, 208
launch Visualizer 197
–nodes_allowed 150

passing to TotalView 57
–remote 57, 88
–s startup 204

commands 55
Action Point > At Location 5, 355
Action Point > Delete All 358
Action Point > Properties 136,

358, 361, 363, 365, 367
Action Point > Save All 123, 382
Action Point > Save As 382
Action Point > Set Barrier 365
Action Point > Suppress All 358
Add to Expression List 309
Auto Visualize (Visualizer) 189
change Visualizer launch 198
Clear All STOP and EVAL 358
CLI, see CLI commands
Custom Groups 278
dmpirun 118, 119
dpvm 159
Edit > Copy 181
Edit > Cut 181
Edit > Delete 181
Edit > Delete All Expressions 311
Edit > Delete Expression 311
Edit > Duplicate Expression 312
Edit > Find 4, 226
Edit > Find Again 226
Edit > Paste 181
Edit > Reset Defaults 311
Edit > Undo 181
File > Close 179, 300
File > Close (Visualizer) 189
File > Close Similar 179, 300
File > Delete (Visualizer) 189, 190
File > Edit Source 229
File > Exit (Visualizer) 189
File > New Program 55, 60, 61, 64,

66, 69, 76, 88, 92, 96, 100,
104

File > Options (Visualizer) 190
File > Preferences 76

Formatting page 284
Launch Strings page 197
Options page 283
Pointer Dive page 295

File > Save Pane 181
File > Search Path 61, 73, 75, 124,

158
File > Signals 71
Group > Attach 127, 128
Group > Attach Subset 131
Group > Control > Go 233
Group > Detach 64
Group > Edit 264
Group > Go 123, 134, 238, 363
Group > Halt 134, 231, 241
Group > Hold 234
Group > Kill 112, 245
Group > Next 134

Group > Release 234
Group > Restart 245
Group > Run To 134
Group > Step 134
group or process 134
interrupting 203
Load All Symbols in Stack 250
mpirun 120, 124, 128
Options > Auto Visualize 187
poe 107, 121
Process > Create 239
Process > Detach 65
Process > Go 119, 120, 122, 126,

128, 134, 238, 245
Process > Halt 134, 231, 241
Process > Hold 234
Process > Next 239
Process > Next Instruction 239
Process > Out 255
Process > Run To 255
Process > Startup 57
Process > Step 239
Process > Step Instruction 239
Process Startup Parameters 76
prun 126
pvm 158, 159
remsh 97
rsh 97, 122
server launch, arguments 92
Set Signal Handling Mode 159
single-stepping 241
Startup 57
step 4
Thread > Continuation Signal 65,

244
Thread > Go 239
Thread > Hold 234
Thread > Set PC 251
Tools > Attach Subset 132
Tools > Call Graph 183
Tools > Command Line 203
Tools > Create Checkpoint 246
Tools > Evaluate 196, 197, 247,

304, 391
Tools > Evaluate, see Expression

List window
Tools > Global Arrays 156
Tools > Manage Shared Libraries

247
Tools > Message Queue 115
Tools > Message Queue Graph

11, 113
Tools > Program Browser 286
Tools > PVM Tasks 161
Tools > Restart 246
Tools > Statistics 345
Tools > Thread Objects 331
Tools > Variable Browser 293
Tools > View Across 165
Tools > Visualize 8, 187

D

TotalView User Guide: version 8.8 419

Tools > Visualize Distribution 164
Tools > Watchpoint 10, 380
totalview

core files 55, 65
totalview command 55, 118, 122,

124, 128
totalviewcli command 55, 56, 124,

128
tvdsvr 85

launching 92
View > Add to Expression List 305
View > Assembler > By Address

176
View > Assembler > Symbolically

176
View > Block Status 297
View > Collapse All 289
View > Compilation Scope 290
View > Display Managers 172
View > Dive 312
View > Dive In All 302
View > Dive in New Window 7
View > Dive Thread 332
View > Dive Thread New 332
View > Examine Format > Raw

296
View > Examine Format > Struc-

tured 296
View > Expand All 289
View > Graph (Visualizer) 189
View > Lookup 160
View > Lookup Function 226, 229
View > Lookup Variable 286, 295,

298, 328, 338
View > Reset 228, 229
View > Reset (Visualizer) 194
View > Source As > Assembler

175
View > Source As > Both 176, 251
View > Source As > Source 175
View > Surface (Visualizer) 189
View > View Across > None 347
View > View Across > Process 347
View > View Across > Thread 347
Visualize 8
visualize 197, 198
Window > Duplicate 179, 302
Window > Duplicate Base Window

(Visualizer) 190
Window > Memorize 180
Window > Memorize All 180
Window > Update 233
Window > Update (PVM) 161

common block
displaying 326
diving on 326
members have function scope 326

comparing variable values 291
comparisons in filters 344

Compilation Scope > Floating com-
mand 306

Compilation Scope command 290
compiled expressions 372

allocating patch space for 373
performance 372

compiled in scope list 333
compiling

–g compiler option 54
multiprocess programs 54
–O option 54
optimization 54
programs 3, 54

completion rules for arena specifiers
274

$complex data type 318
$complex_8 data type 318
$complex_16 data type 318
compound objects 315
conditional breakpoints 368, 370, 397
conditional watchpoints, see watch-

points
conf file 94
configure command 106
configuring the Visualizer 197
connection for serial line 99
connection timeout 88, 90

altering 87
connection timeout, bulk server

launch 90
contained functions 328

displaying 329
context menus 170

Add to Expression 9
continuation signal 244

clearing 245
Continuation Signal command 65, 244
continuing with a signal 244
continuous execution 203
Control Group and Share Groups Ex-

amples figure 238
control groups 24, 237

defined 22
discussion 237
overview 264
specifier for 266

control in parallel environments 212
control in serial environments 212
control registers 252

interpreting 252
controlling program execution 212
conversion rules for filters 340
Copy command 181
copying 181
copying between windows 181
core dump, naming the signal that

caused 66
core files

debugging 57
examining 65

in totalview command 55, 65
multi-threaded 66
opening 62, 63

correcting programs 371
count array statistic 346
$count built-in function 397
$countall built-in function 397
countdown breakpoints 370, 397
counter, loop 370
$countthread built-in function 397
CPU registers 252
cpu_use option 121
Cray

configuring TotalView for 151
loading TotalView 152
qsub 152
starting the CLI 152
starting TotalView 152

Cray XT CNLL
using TotalView 152

Cray XT3 debugging 150
tvdsvr 150

Create Checkpoint command 246
creating custom groups 278
creating groups 26, 238
creating new processes 206
creating processes 238

and starting them 238
using Step 239
without starting it 239
without starting them 239

creating threads 18
creating type transformations 283
crt0.o module 160
Ctrl+C 203
current location of program counter

175
current set indicator 261, 278
current stack frame 229
current working directory 73, 75
Custom Groups command 278
Cut command 181
Cycle Detection tab 113

D
D control group specifier 266
dactions command 352

–load 123, 382
–save 123, 382

daemons 16, 18
dassign command 312
data

editing 7
examining 6
filtering 8
see also Variable Window
slicing 8
viewing, from Visualizer 186

data assembler pseudo op 395
data dumping 296

D

420 TotalView User Guide: version 8.8

data filtering, see arrays, filtering
data precision, changing display 80
data types 318

see also TotalView data types
C++ 324
changing 313
changing class types in C++ 325
for visualization 186
int 314
int* 314
int[] 314
opaque data 322
pointers to arrays 316
predefined 317
to visualize 186

data watchpoints, see watchpoints
data_format variables 284
dataset

defined for Visualizer 186
visualizing 196
window (Visualizer) 189
window (Visualizer), display

commands 190
window, menu commands 189

deleting 189
dattach command 57, 63, 64, 66, 108,

123, 124, 130, 212
mprun command 130

dbarrier command 364, 366
–e 369
–stop_when_hit 136

dbfork library 54, 363
linking with 54

dbreak command 221, 354, 356, 362
–e 369

dcheckpoint command 246
ddelete command 112, 356, 358, 367
ddetach command 65
ddisable command 358, 367
ddlopen command 247
ddown command 243
deadlocks 257

message passing 115
$debug assembler pseudo op 395
–debug, using with MPICH 112
debugger initialization 204
debugger PID 212
debugger server 85

starting manually 91
Debugger Unique ID (DUID) 396
debugging

core file 57
executable file 55
multiprocess programs 54
not compiled with –g 54
OpenMP applications 138
over a serial line 99
PE applications 121
programs that call execve 54

programs that call fork 54
PVM applications 157, 158
QSW RMS 126
SHMEM library code 162
UPC programs 163

debugging Fortran modules 328
debugging MPI programs 58
debugging session 213
debugging symbols, reading 248
debugging techniques 30, 112, 130
declared arrays, displaying 323
def assembler pseudo op 395
default address range conflicts 374
default control group specifier 266
default focus 271
default process/thread set 260
default programming language 54
default text editor 230
default width specifier 262
deferred shape array

definition 336
types 329

deferred symbols
force loading 250
reading 248

deferring order for shared libraries 249
Delete All command 358
Delete command 181
Delete command (Visualizer) 189, 190
Delete, in dataset window 190
deleting

action points 358
datasets 189
programs 245

denable command 358, 359
denorm filter 341
denormalized count array statistic 346
DENORMs 339
deprecated X defaults 82
deprecated, defined 82
dereferencing 7

automatic 295
controlling 81
pointers 295

Detach command 64, 65
detaching 131
detaching from processes 65
detaching removes all breakpoints 65
detecting cycles 113
determining scope 253, 291
dfocus command 241, 259, 260

example 260
dga command 156
dgo command 119, 122, 123, 128,

134, 238, 275
dgroups command

–add 264, 270
–remove 31

dhalt command 134, 231, 241
dhold command 234, 365

–process 234
–thread 234

difference operator 277
directories, setting order of search 73
directory search path 158
disabling

action points 358
autolaunch 87, 96
autolaunch feature 89
visualization 197

disassembled machine code 227
in variable window 299

discard dive stack 228
discard mode for signals 73
discarding signal problem 73
disconnected processing 16
displaying 178

areas of memory 298
argv array 323
array data 178
arrays 335, 336
blocks 289
columns 310
common blocks 326
declared and allocated arrays 323
exited threads 173
Fortran data types 326
Fortran module data 326
global variables 286, 293
long variable names 287
machine instructions 299
memory 298
pointer 178
pointer data 178
Process window 178
registers 294
remote hostnames 171
stack trace pane 178
STL variables 282
structs 317
subroutines 178
thread objects 331
typedefs 317
unions 317
variable 178
Variable Windows 285

distributed debugging
see also PVM applications
remote server 85

dive icon 179, 300
Dive In All command 302, 303
Dive In New Window command 7
Dive Thread command 332
Dive Thread New command 332
dividing work up 17
diving 114, 124, 170, 178, 285

creating call_graph group 184
defined 7
in a "view acrosss" pane 348
in a variable window 300

E

TotalView User Guide: version 8.8 421

in source code 228
into a pointer 178, 300
into a process 178
into a stack frame 178
into a structure 300
into a thread 178
into a variable 7, 178
into an array 300
into formal parameters 294
into Fortran common blocks 326
into function name 228
into global variables 286, 293
into local variables 294
into MPI buffer 117
into MPI processes 116
into parameters 294
into pointer 178
into processes 178
into PVM tasks 161
into registers 294
into routines 178
into the PC 299
into threads 174, 178
into variables 178
nested 178
nested dive defined 300
program browser 293
registers 285
scoping issue 291
using middle mouse button 181
variables 285

dkill command 135, 206, 212, 245
dll_read_all_symbols variable 250
dll_read_loader_symbols variable 250
dll_read_loader_symbols_only vari-

able 250
dll_read_no_symbols variable 250
dload command 63, 92, 205, 206, 212

returning process ID 207
dlopen(), using 247
dmg installer 56
dmpirun command 118, 119
dnext command 134, 239, 242
dnexti command 239, 242
double assembler pseudo op 395
$double_precision data type 318
dout command 243, 255
dpid 212
dprint command 140, 142, 218, 227,

252, 286, 287, 295, 298, 317,
323, 326, 327, 329, 336, 338

dptsets command 69, 232
DPVM

see also PVM
enabling support for 159
must be running before TotalView

159
starting session 159

–dpvm command-line option 159
dpvm shell command 159

dpvm variable 159
drawing options 190
drerun command 206, 245
drestart command 246
drun command 205, 208
dset command 208, 210
dstatus command 69, 367
dstep command 239, 242, 255, 261,

263, 275
dstep commands 134
dstepi command 239, 242
DUID 396

of process 396
$duid built-in variable 396
dunhold command 234, 365

–thread 234
dunset command 208
duntil command 243, 255, 257
dup command 243
dup commands 287
Duplicate Base Window

in Visualizer dataset window 190
Duplicate command 179, 302
dwhere command 262, 275, 287
dynamic call graph 183
Dynamic Libraries page 248
dynamic patch space allocation 373
dynamically linked, stopping after

start() 160

E
E state 70
Edit > Copy command 181
Edit > Cut command 181
Edit > Delete All Expressions com-

mand 311
Edit > Delete command 181
Edit > Delete Expression command

311
Edit > Duplicate Expression com-

mand 312
Edit > Find Again command 226
Edit > Find command 4, 226
Edit > Paste command 181
Edit > Reset Defaults command 311
Edit > Undo command 181
edit mode 170
Edit Source command 229
editing

addresses 323
compound objects or arrays 315
source text 229
text 180
type strings 313
view across data 349

editing groups 279
EDITOR environment variable 230
editor launch string 229
effects of parallelism on debugger be-

havior 211

Enable action point 358
Enable Single Debug Server Launch

check box 96
Enable Visualizer Launch check box

198
enabling

action points 358
environment variables

adding 67
before starting poe 121
EDITOR 230
how to enter 67
LC_LIBRARY_PATH 59
LM_LICENSE_FILE 59
MP_ADAPTER_USE 121
MP_CPU_USE 121
MP_EUIDEVELOP 117
PATH 73, 74
SHLIB_PATH 59
TOTALVIEW 58, 107, 135
TVDSVRLAUNCHCMD 92

equiv assembler pseudo op 395
error state 70
errors, in multiprocess program 72
ESECUTABLE_PATH variable 75
EVAL icon 170

for evaluation points 170
eval points

and expression system 385
see evaluation points

Evaluate command 196, 197, 391, 396
Evaluate Window

expression system 386
Evaluate window 385
evaluating an expression in a watch-

point 376
evaluating expressions 391
evaluating state 213
evaluation points 5, 368

assembler constructs 392
C constructs 387
clearing 170
defined 213, 352
defining 368
examples 370
Fortran constructs 389
hitting breakpoint while evaluat-

ing 392
listing 175
lists of 175
machine level 368
patching programs 6
printing from 5
saving 369
setting 170, 220, 369
using $stop 6
where generated 368

evaluation system limitations 386
evaluation, see also expression system
event points listing 175

F

422 TotalView User Guide: version 8.8

Examine Format > Raw Format com-
mand 296

Examine Format > Structured com-
mand 296

examining
core files 65
data 6
memory 296
processes 237
source and assembler code 175
stack trace and stack frame 294
status and control registers 252

exception enable modes 252
excluded information, reading 250
exclusion list, shared library 249
EXECUTABLE_PATH tab 74
EXECUTABLE_PATH variable 61, 73,

158, 216
setting 216

executables
debugging 55
specifying name in scope 334

execution
controlling 212
halting 231
out of function 243
resuming 233
startup file 59
to completion of function 243

execution models 11
execve() 54, 237, 363

debugging programs that call 54
setting breakpoints with 363

existent operator 277
exit CLI command 60
Exit command 60
Exit command (Visualizer) 189
exited threads, displaying 173
expanding structures 289
expression evaluation window

compiled and interpreted expres-
sions 372

discussion 391
Expression List window 8, 286, 300,

305, 315
Add to Expression List command

305
aggregates 307
and expression system 385
array of structures 307
diving 307
editing contents 311
editing the value 311
editing type field 311
entering variables 305
expressions 307
highlighting changes 307
multiple windows 309
multiprocess/multithreaded be-

havior 309

rebinding 310
reevaluating 309
reopening 310
reordering rows 311
restarting your program 310
selecting before sending 306
sorting columns 311

Expression List window, 385
expression system

accessing array elements 384
and arrays 384
C/C++ declarations 388
C/C++ statements 388
defined 383
eval points 385
Expression List Window 385
Fortran 389
Fortran intrinsics 390
functions and their issues 385
methods 384
structures 384
templates and limitations 388
Tools > Evaluate Window 386
using C++ 387
Variable Window 385

expressions 277, 362
can contain loops 391
changing in Variable Window 304
compiled 372
evaluating 391
in Expression List window 307
performance of 372
side effects 304

expressions and variables 304
$extended data type 319
extent of arrays 317

F
figures

Action Point > Properties Dialog
Box 357, 361, 366

Action Point Symbol 352
Ambiguous Function Dialog Box

227, 357
Ambiguous Line Dialog Box 354,

355
Array Data Filter by Range of Val-

ues 343
Array Data Filtering by Compari-

son 341
Array Data Filtering for IEEE Values

342
Array Statistics Window 345
Breakpoint at Assembler Instruc-

tion Dialog Box 360
Control and Share Groups Exam-

ple 238
File > Preferences: Action Points

Page 362

Five Processes and Their Groups
on Two Computers 25

Fortran Array with Inverse Order
and Limited Extent 338

PC Arrow Over a Stop Icon 361
Sorted Variable Window 345
Stopped Execution of Compiled

Expressions 373
Stride Displaying the Four Corners

of an Array 337
Tools > Evaluate Dialog Box 392,

393
Tools > Watchpoint Dialog Box

378
Two Computers Working on One

Problem 17
Undive/Redive Buttons 301
Using Assembler 393
View > Display Exited Threads 173
Viewing Across an Array of Struc-

tures 348
Viewing Across Threads 348
Waiting to Complete Message Box

392
File > Close command 179, 300
File > Close command (Visualizer) 189
File > Close Relatives command 179
File > Close Similar command 179,

300
File > Delete command (Visualizer)

189, 190
File > Edit Source command 229
File > Exit command 60
File > Exit command (Visualizer) 189
File > New Program command 55, 60,

61, 64, 66, 69, 76, 88, 92, 96,
100, 104

File > Options command (Visualizer)
190

File > Preferences
Bulk Launch page 91
Options page 180

File > Preferences command
Action Points page 72, 77, 133
Bulk Launch page 78, 89, 91
different values between plat-

forms 76
Dynamic Libraries page 79, 248
Fonts page 80
Formatting page 80, 284
Launch Strings page 78, 87, 197
Options page 72, 77, 283
overview 76
Parallel page 79, 132
Pointer Dive page 81, 295

File > Preferences: Action Points Page
figure 362

File > Save Pane command 181
File > Search Path command 61, 73,

74, 75, 124, 158

G

TotalView User Guide: version 8.8 423

search order 73, 74
File > Signals command 71
–file command-line option to Visualiz-

er 197, 198
file extensions 54
file, start up 59
files

.rhosts 122
hosts.equiv 122

fill assembler pseudo op 395
filter expression, matching 339
filtering 8

array data 339, 340
array expressions 343
by comparison 340
comparison operators 340
conversion rules 340
example 341
IEEE values 341
options 339
ranges of values 343
unsigned comparisons 341

filters 344
$denorm 341
$inf 341
$nan 341
$nanq 341
$nans 341
$ninf 341
$pdenorm 341
$pinf 341
comparisons 344

Find Again command 226
Find command 4, 226
finding

functions 227
source code 227, 229
source code for functions 227

first thread indicator of < 261
Five Processes and Their Groups on

Two Computers figure 25
$float data type 319
float assembler pseudo op 395
floating scope 306
focus

as list 274
changing 260
pushing 260
restoring 260
setting 259

for loop 391
Force window positions (disables win-

dow manager placement modes)
check box 180

fork() 54, 237, 363
debugging programs that call 54
setting breakpoints with 363

fork_loop.tvd example program 204
Formatting page 284
Fortran

array bounds 316
arrays 316
common blocks 326
contained functions 328
data types, displaying 326
debugging modules 328
deferred shape array types 329
expression system 389
filter expression 343
in code fragment 368
in evaluation points 389
intrinsics in expression system 390
module data, displaying 326
modules 326, 328
pointer types 330
type strings supported by

TotalView 314
user defined types 329

Fortran Array with Inverse Order and
Limited Extent figure 338

Fortran casting for Global Arrays 155,
156

Fortran modules 331
command 327

Fortran parameters 331
forward icon 179
four linked processors 19
4142 default port 91
frame pointer 243
freezing window display 291
function calls, in eval points 371
function visualization 183
functions

finding 227
IEEE 342
in expression system 385
locating 226
returning from 244

G
–g compiler option 54, 178
g width specifier 267, 271
$GA cast 155, 156, 155
$ga cast 155, 156
gcc UPC compiler 163
generating a symbol table 54
Global Arrays 155

casting 155, 156
debugging 154
diving on type information 156
Intel IA-64 155

global assembler pseudo op 395
global variables

changing 239
displaying 239
diving into 286, 293

gnu_debuglink file 58
Go command 4, 119, 122, 123, 126,

128, 134, 238
GOI defined 253

going parallel 133
goto statements 368
Graph command (Visualizer) 189
Graph Data Window 190
graph points 190
Graph visualization menu 189
graph window, creating 189
Graph, in Dataset Window 189
graphs, two dimensional 190
group

process 258
thread 258

Group > Attach Subset command
127, 128, 131

Group > Control > Go command 233
Group > Custom Group command 31
Group > Detach command 64
Group > Edit command 264
Group > Go command 123, 134, 235,

238, 363
Group > Halt command 134, 231, 241
Group > Hold command 234
Group > Kill command 112, 135, 245
Group > Next command 134
Group > Release command 234
Group > Restart command 245
Group > Run To command 134
Group > Step command 134
group aliases 210

limitations 210
group commands 134
group indicator

defined 265
group name 266
group number 266
group stepping 256
group syntax 265

group number 266
naming names 266
predefined groups 265

GROUP variable 271
group width specifier 262
groups 158

see also processes
and barriers 12
behavior 256
creating 26, 238, 278
defined 22, 23
editing 279
examining 237
holding processes 234
overview 22
process 257
relationships 262
releasing processes 234
running 132
selecting processes for 278
setting 270
starting 238
stopping 132

H

424 TotalView User Guide: version 8.8

thread 257
Groups > Custom Groups command

184, 278
GUI namespace 209

H
h held indicator 233
–h localhost option for HP MPI 120
half assembler pseudo op 395
Halt command 134, 231, 241
halt commands 231
halting 231

groups 231
processes 231
threads 231

handler routine 71
handling signals 71, 159
held indicator 233
held operator 277
held processes, defined 365
hexadecimal address, specifying in

variable window 298
hi16 assembler operator 394
hi32 assembler operator 394
hierarchy toggle button, Root Window

172
highlighted variables 287, 288
highlighting changes in Expression List

window 307
hitting a barrier point 367
hold and release 233
$hold assembler pseudo op 395
$hold built-in function 398
Hold command 234
hold state 234

toggling 365
Hold Threads command 234
holding and advancing processes 212
holding problems 236
holding threads 258
$holdprocess assembler pseudo op

395
$holdprocess built-in function 398
$holdprocessall built-in function 398
$holdprocessstopall assembler pseu-

do op 395
$holdstopall assembler pseudo op

395
$holdstopall built-in function 398
$holdthread assembler pseudo op 395
$holdthread built-in function 398
$holdthreadstop assembler pseudo

op 395
$holdthreadstop built-in function 398
$holdthreadstopall assembler pseudo

op 395
$holdthreadstopall built-in function

398
$holdthreadstopprocess assembler

pseudo op 395

$holdthreadstopprocess built-in func-
tion 398

hostname
expansion 95
for tvdsvr 57
in square brackets 171

hosts.equiv file 122
how TotalView determines share group

238
hung processes 63

I
I state 70
IBM BlueGene

bluegene_io_interface 125
bluegene_server_launch 125
starting TotalView 124
starting tvdsvrs 124

IBM cell broadband enginesee Cell
broadband engine

IBM MPI 121
IBM SP machine 106, 107
idle state 70
IEEE functions 342
Ignore mode warning 73
ignoring action points 358
implicitly defined process/thread set

260
incomplete arena specifier 274
inconsistent widths 275
inf filter 341
infinite loop, see loop, infinite
infinity count array statistic 346
INFs 339
inheritance hierarchy 387
initial process 211
initialization search paths 58
initialization subdirectory 58
initializing an array slice 217
initializing debugging state 59
initializing the CLI 204
initializing TotalView 58
instructions

data type for 322
displaying 299

$int data type 319
int data type 314
int* data type 314
int[] data type 314
$integer_2 data type 319
$integer_4 data type 319
$integer_8 data type 319
interactive CLI 201
interface to CLI 203
internal counter 370
interpreted expressions 372

performance 372
interrupting commands 203
intersection operator 277
intrinsic functions

$is_Inf 342
$is_inf 342
$is_nan 342
$is_ndenorm 342
$is_ninf 342
$is_nnorm 342
$is_norm 342
$is_pdenorm 342
$is_pinf 342
$is_pnom 342
$is_pzero 343
$is_qnan 343
$is_snan 343
$is_zero 343

intrinsics, see built-in functions
inverting array order 337
inverting axis 191
invoking CLI program from shell exam-

ple 204
invoking TotalView on UPC 163
IP over the switch 121
iterating

over a list 275
over arenas 261

J
joystick mode, Visualizer 185

K
K state, unviewable 70
–KeepSendQueue command-line op-

tion 118
kernel 70
Kill command 135, 245
killing processes when exiting 64
killing programs 245
–ksq command-line option 118

L
L lockstep group specifier 266, 267
labels, for machine instructions 299
LAM/MPI 125

starting 126
Last Value column 287, 307
launch

configuring Visualizer 197
options for Visualizer 197
TotalView Visualizer from com-

mand line 197
tvdsvr 85

Launch Strings page 87, 96, 197
lcomm assembler pseudo op 395
LD_LIBRARY_PATH environment vari-

able 59, 163
left margin area 175
left mouse button 169
libraries

dbfork 54
debugging SHMEM library code

162
naming 248

M

TotalView User Guide: version 8.8 425

see alsoshared libraries
limitations in evaluation system 386
limiting array display 338
line number area 170
line numbers 175

for specifying blocks 334
linear view 172
LINES_PER_SCREEN variable 208
linked lists, following pointers 300
list transformation, STL 283
lists of processes 170
lists of variables, seeing 8
lists with inconsistent widths 275
lists, iterating over 275
LM_LICENSE_FILE environment vari-

able 59
lo16 assembler operator 394
lo32 assembler operator 394
Load All Symbols in Stack command

250
loader symbols, reading 248
loading

file into TotalView 56
new executables 60
remote executables 57
shared library symbols 249

loading loader symbols 249
loading no symbols 249
local hosts 57
locations, toggling breakpoints at 355
lockstep group 25, 254, 261

defined 23
L specifier 266
number of 265
overview 265

$logical data type 319
$logical_1 data type 319
$logical_2 data type 319
$logical_4 data type 319
$logical_8 data type 319
$long data type 319
long variable names, displaying 287
$long_branch assembler pseudo op

395
$long_long data type 319
Lookup Function command 160, 226,

229
Lookup Variable command 142, 226,

286, 295, 298, 328
specifying slices 338

loop counter 370
loop infinite, see infinite loop
lower adjacent array statistic 346
lower bounds 316

non default 316
of array slices 336

lysm TotalView pseudo op 395

M
M state 70

Mac OS X
procmod permission 56
starting execution 56
starting from an xterm 56

machine instructions
data type 322
data type for 322
displaying 299

main() 160
stopping before entering 160

make_actions.tcl sample macro 204,
220

manager processes, displaying 172
manager threads 21, 25

displaying 172
manual hold and release 233
manually starting tvdsvr 96
map templates 282
map transformation, STL 282
master process, recreating slave pro-

cesses 135
master thread 138

OpenMP 139, 143
stack 140

matching processes 257
matching stack frames 347
maximum array statistic 346
mean array statistic 346
median array statistic 346
Memorize All command 180
Memorize command 180
memory contents, raw 297
memory information 297
memory locations, changing values of

312
memory, displaying areas of 298
memory, examining 296
menus, context 170
message passing deadlocks 115
Message Passing Interface/Chame-

leon Standard, see MPICH
Message Queue command 115
message queue display 112, 128
Message Queue Graph 114

diving 114
rearranging shape 115
updating 114

Message Queue Graph command 113
message queue graph window 11
message tags, reserved 162
message-passing programs 133
messages

envelope information 117
operations 116
reserved tags 162
unexpected 117

messages from TotalView, saving 207
methods, in expression system 384
middle mouse button 169
middle mouse dive 181

minimum array statistic 346
missing TID 262
mixed state 70
mixing arena specifiers 275
modify watchpoints, see watchpoints
modifying code behavior 368
module data definition 326
modules 326, 328

debugging
Fortran 328

displaying Fortran data 326
modules in Fortran 331
more processing 208
more prompt 208
mouse button

diving 169
left 169
middle 169
right 170
selecting 169

mouse buttons, using 169
MP_ADAPTER_USE environment vari-

able 121
MP_CPU_USE environment variable

121
MP_EUIDEVELOP environment vari-

able 117
MP_TIMEOUT 122
MPI

attaching to 128
attaching to HP job 120
attaching to running job 119
buffer diving 117
communicators 115
debugging 58
LAM 125
library state 115
on IBM 121
on SGI 128
on SiCortex 127
on Sun 129
process diving 116
rank display 112
starting 104
starting on Cray 118
starting on HP Alpha 118
starting on HP machines 119
starting on SGI 128
starting processes 119, 127
starting processes, SGI 128
toolbar settings for 13
troubleshooting 112

mpi tasks, attaching to 133
MPI_Init() 115, 123

breakpoints and timeouts 135
MPI_Iprobe() 117
MPI_Recv() 117
MPICH 106, 107

and SIGINT 112

N

426 TotalView User Guide: version 8.8

and the TOTALVIEW environment
variable 107

attach from TotalView 108
attaching to 108
ch_lfshmem device 106, 108
ch_mpl device 106
ch_p4 device 106, 108
ch_shmem device 108
ch_smem device 106
configuring 106
debugging tips 135
diving into process 108
MPICH/ch_p4 135
mpirun command 106, 107
naming processes 109
obtaining 106
P4 109
–p4pg files 109
starting TotalView using 106
–tv command-line option 106
using –debug 112

mpirun command 106, 107, 120, 124,
128, 135

examples 120
for HP MPI 120
options to TotalView through 135
passing options to 135

mpirun process 128, 129
MPL_Init() 123

and breakpoints 123
mprun command 129, 130
MQD, see message queue display
multiple classes, resolving 228
Multiple indicator 348
multiple sessions 157
multi-process debugging 10
multi-process programming library 54
multi-process programs

and signals 72
compiling 54
process groups 237
setting and clearing breakpoints

361
multiprocessing 19
multi-threaded core files 66
mult-ithreaded debugging 10
multi-threaded signals 244

N
–n option, of rsh command 98
–n single process server launch com-

mand 93
names of processes in process groups

237
namespaces 209

TV:: 209
TV::GUI:: 209

naming libraries 248
naming MPICH processes 109
naming rules

for control groups 237
for share groups 237

nan filter 341
nanq filter 341
NaNs 339, 341

array statistic 346
nans filter 341
navigating, source code 229
ndenorm filter 341
nested dive 178

defined 300
window 301

nested stack frame, running to 258
New Program command 55, 60, 61, 64,

66, 69, 76, 92, 96, 100, 104
Next command 134, 239, 241
“next” commands 242
Next Instruction command 239
$nid built-in variable 396
ninf filter 341
–no_stop_all command-line option

135
node ID 396
nodes, attaching from to poe 123
nodes, detaching 131
–nodes_allowed command-line op-

tion 150
Cray 151

–nodes_allowed tvdsvr command-line
option 150

nodes_allowed,tvdsvr command-line
option 150

None (lView Across) command 347
nonexistent operators 277
non-sequential program execution

203

O
–O option 54
offsets, for machine instructions 299
$oldval built-in variable 396
omitting array stride 337
omitting components in creating

scope 334
omitting period in specifier 274
omitting width specifier 274
opaque data 322
opaque type definitions 322
Open process window at breakpoint

check box 72
Open process window on signal check

box 72
opening a core file 62, 63
opening shared libraries 247
OpenMP 138, 139

debugging 138
debugging applications 138
master thread 138, 139, 141, 143
master thread stack context 140
private variables 139

runtime library 138
shared variables 139, 143
stack parent token 143
THREADPRIVATE variables 142
TotalView-supported features 138
viewing shared variables 141
worker threads 138

operators
- difference 277
& intersection 277
| union 277
breakpoint 277
existent 277
held 277
nonexistent 277
running 277
stopped 277
unheld 277
watchpoint 277

optimizations, compiling for 54
options

for visualize 197
in dataset window 190
–patch_area 374
–patch_area_length 374
–sb 382
setting 82

Options > Auto Visualize command
(Visualizer) 187, 189

Options command (Visualizer) 190
Options page 180, 283
org assembler pseudo op 395
ORNL PVM, see PVM
Out command 241
“out” commands 243
out command, goal 244
outliers 346, 347
outlined routine 138, 141, 143
outlining, defined 138
output

assigning output to variable 207
from CLI 207
only last command executed re-

turned 207
printing 207
returning 207
when not displayed 207

P
p width specifier 267
P+/P- buttons 232
p.t notation 261
P/T set controls 258
p/t sets

arguments to Tcl 260
defined 259
expressions 277
set of arenas 261
syntax 262

p/t syntax, group syntax 265

P

TotalView User Guide: version 8.8 427

p4 listener process 108
–p4pg files 109
–p4pg option 109
panes

source code, see source code
pane

stack frame, see stack frame pane
stack trace, see stack trace pane

panes, saving 181
parallel debugging tips 130
PARALLEL DO outlined routine 139
Parallel Environment for AIX, see PE
parallel environments, execution con-

trol of 212
Parallel page 132
parallel program, defined 211
parallel program, restarting 135
parallel region 139
Parallel tab, File > New Program 104
parallel tasks, starting 123
Parallel Virtual Machine, see PVM
parallel_attach variable 133
parallel_stop variables 133
parameters, displaying in Fortran 331
parsing comments example 220
passing arguments 57
passing default arguments 208
Paste command 181
pasting 181

between windows 181
with middle mouse 169

patch space size, different than 1MB
374

patch space, allocating 373
–patch_area_base option 374
–patch_area_length option 374
patching

function calls 371
programs 370

PATH environment variable 61, 73, 74
pathnames, setting in procgroup file

109
PC Arrow Over a Stop Icon figure 361
PC icon 251
pdenorm filter 341
PE 123

adapter_use option 121
and slow processes 136
applications 121
cpu_use option 121
debugging tips 135
from command line 122
from poe 122
options to use 121
switch-based communication 121

PE applications 121
pending messages 115
pending receive operations 116, 117
pending send operations 116, 118

configuring for 118

pending unexpected messages 116
performance of interpreted, and com-

piled expressions 372
performance of remote debugging 85
–persist command-line option to Visu-

alizer 197, 198
phase, UPC 165
pick, Visualizer 185
picking a dataset point value 191
$pid built-in variable 396
pid specifier, omitting 274
pid.tid to identify thread 174
pinf filter 341
piping data 181
piping information 181
plant in share group 362
Plant in share group check box 363,

369
poe

and mpirun 107
and TotalView 122
arguments 121
attaching to 123, 124
interacting with 136
on IBM SP 108
placing on process list 124
required options to 121
running PE 122
TotalView acquires poe processes

123
poe, and bulk server launch 96
POI defined 253
point of execution for multiprocess or

multithreaded program 175
pointer data 178
Pointer Dive page 295
pointers 178

as arrays 295
chasing 295, 300
dereferencing 295
diving on 178
in Fortran 330
to arrays 316

pointer-to-shared UPC data 165
points, in graphs 190
pop_at_breakpoint variable 72
pop_on_error variable 72
popping a window 178
port 4142 91
–port command-line option 91
port number for tvdsvr 57
PPE

defined 144
PPU

organization 146
PPUdefined 144
PPUdescription 145
precision 284

changing 284
changing display 80

predefined data types 317
preference file 59
preferences

Action Points page 77
Bulk Launch page 78, 89, 91
Dynamic Libraries page 79
Fonts page 80
Formatting page 80
Launch Strings page 78, 87
Options page 72, 77
Parallel page 79
Pointer Dive page 81
setting 82

preloading shared libraries 247
primary thread, stepping failure 257
print statements, using 5
printing an array slice 217
printing in an eval point 5
private variables 138

in OpenMP 139
procedures

debugging over a serial line 99
displaying 323
displaying declared and allocated

arrays 323
process

detaching 65
holding 258
ID 396
numbers are unique 211
selecting in processes/rank tab

232
state 68
states 70, 175
states, attached 70
stepping 256
synchronization 133, 258
width specifier 262
width specifier, omitting 274

Process > Create command 239
Process > Detach command 65
Process > Go command 119, 120,

122, 126, 128, 134, 235, 238,
245

Process > Halt command 134, 231,
241

Process > Hold command 234
Process > Hold Threads command

234
Process > Next command 239
Process > Next Instruction command

239
Process > Out command 255
Process > Release Threads command

234
Process > Run To command 255
Process > Startup Parameters com-

mand 57, 76
Process > Step command 239

P

428 TotalView User Guide: version 8.8

Process > Step Instruction command
239

process as dimension in Visualizer 187
process barrier breakpoint

changes when clearing 367
changes when setting 367
defined 352
deleting 367
setting 365

process DUID 396
process focus 259
process groups 23, 257, 258, 264

behavior 270
behavior at goal 257
stepping 256
synchronizing 257

Process Window 4, 173
displaying 178
host name in title 171
raising 72

process, attaching to existing 62
process, starting a new 61
process/set threads

saving 263
process/thread identifier 211
process/thread notation 211
process/thread sets 211

as arguments 260
changing focus 260
default 260
implicitly defined 260
inconsistent widths 275
structure of 262
target 259
widths inconsistent 275

process_id.thread_id 261
process_load_callbacks variable 59
$processduid built-in variable 396
processes

see also automatic process acqui-
sition

see also groups
acquiring 107, 109, 160
acquiring in PVM applications 158
acquisition in poe 123
apparently hung 134
attaching to 63, 123, 161
barrier point behavior 367
behavior 256
breakpoints shared 362
call graph 183
changing 232
cleanup 162
copy breakpoints from master

process 107
creating 238, 239
creating by single-stepping 239
creating new 206
creating using Go 238
creating without starting 239

deleting 245
deleting related 245
detaching from 65
displaying data 178
displaying manager 172
diving into 124
diving on 178
groups 237
held defined 365
holding 233, 364, 398
hung 63
initial 211
killing while exiting 64
list of 170
loading new executables 60
master restart 135
MPI 116
names 237
refreshing process info 233
released 365
releasing 233, 364, 367
restarting 245
single-stepping 255
slave, breakpoints in 108
spawned 211
starting 238
state 69
status of 68
stepping 12, 134, 256
stop all related 362
stopped 365
stopped at barrier point 367
stopping 231, 368
stopping all related 72
stopping intrinsic 398
stopping spawned 107
switching between 11
synchronizing 213, 257
tab 231
terminating 206
types of process groups 237
when stopped 256

Processes button 362
process-level stepping 134
processors and threads 19
procgroup file 109

using same absolute path names
109

procmod permission, Mac OS X 56
Program Browser 293

explaining symbols 293
program control groups

defined 264
naming 237

program counter (PC) 175
arrow icon for PC 175
indicator 175
setting 251
setting program counter 250
setting to a stopped thread 251

program execution
advancing 212
controlling 212

program state, changing 203
Program tab 61
program visualization 183
programming languages, determining

which used 54
programming TotalView 14
programs

compiling 3, 54
compiling using –g 54
correcting 371
deleting 245
killing 245
not compiled with –g 54
patching 6, 370
restarting 245

prompt and width specifier 268
PROMPT variable 210
Properties command 136, 352, 357,

361, 365, 369
Properties window 359
properties, of action points 5
prototypes for temp files 90
prun command 126
prun, and bulk server launch 95
pthread ID 212
pthreads, see threads
pushing focus 260
PVM

acquiring processes 158
attaching procedure 161
attaching to tasks 161
automatic process acquisition 160
cleanup of tvdsvr 162
creating symbolic link to tvdsvr

158
daemons 162
debugging 157
message tags 162
multiple instances not allowed by

single user 157
multiple sessions 157
running with DPVM 157
same architecture 161
search path 158
starting actions 160
tasker 160
tasker event 160
tasks 157, 158
TotalView as tasker 157
TotalView limitations 157
tvdsvr 160
Update Command 161

pvm command 158, 159
PVM groups, unrelated to process

groups 158
PVM Tasks command 161
pvm variable 159

S

TotalView User Guide: version 8.8 429

pvm_joingroup() 162
pvm_spawn() 158, 160, 161
pvmgs process 158, 162

terminated 162

Q
QSW RMS applications 126

attaching to 127
debugging 126
starting 126

quad assembler pseudo op 396
Quadrics RMS 126
quartiles array statistic 346

R
R state 70
raising process window 72
rank display 112
rank for Visualizer 198
ranks 113
ranks tab 112, 231
Raw Format command 296
raw memory contents 296
raw memory data 297
read_symbols command 250
reading loader and debugger symbols

248
$real data type 319
$real_16 data type 319
$real_4 data type 319
$real_8 data type 319
rebinding the Variable Window 300
recursive functions 244

single-stepping 243
redive 301
redive all 301
redive buttons 300
redive icon 179, 300
redive/undive buttons 7
registers

editing 252
interpreting 252

Release command 234
release state 234
Release Threads command 234
reloading breakpoints 123
remembering window positions 180
–remote command-line option 57, 88
Remote Debug Server Launch prefer-

ences 87
remote debugging 85

see also PVM applications
launching tvdsvr 85
performance 85

remote executables, loading 57
remote hosts 57
remote login 122
–remote option 57
remote shell command, changing 97
removing breakpoints 170
remsh command 97

used in server launches 92
replacing default arguments 208
researching directories 75
reserved message tags 162
Reset command 228, 229
Reset command (Visualizer) 194
resetting command-line arguments 67
resetting the program counter 251
resolving ambiguous names 228
resolving multiple classes 228
resolving multiple static functions 228
Restart Checkpoint command 246
Restart command 245
restarting

parallel programs 135
program execution 206, 245

restoring focus 260
restricting output data 181
results, assigning output to variables

207
resuming

executing thread 250
execution 233, 238
processes with a signal 244

returning to original source location
228

reusing windows 178
.rhosts file 97
right angle bracket (>) 178
right mouse button 170
RMS applications 126

attaching to 127
starting 126

Root Window 10, 170
Attached Page 124, 172
collapsing entries 172
expanding entries 172
selecting a process 178
sorting columns 172
starting CLI from 203
state indicator 69
Unattached page 108

rounding modes 252
routine visualization 183
routines, diving on 178
routines, selecting 174
RS_DBG_CLIENTS_PER_SERVER envi-

ronment variable 150
rsh command 97, 122
rules for scoping 334
Run To command 4, 134, 241
“run to” commands 243, 257
running CLI commands 59
running groups 132
running operator 277
running state 70

S
–s command-line option 59, 204
S share group specifier 266

S state 70
S width specifier 267
sample programs

make_actions.tcl 204
sane command argument 204
Satisfaction group items pulldown 366
satisfaction set 366
satisfied barrier 366
Save All (action points) command 382
Save All command 382
Save Pane command 181
saved action points 59
saving

action points 382
TotalView messages 207
window contents 181

saving data, restricting output 181
–sb option 382
scope

determining 291
scopes

compiled in 333
scoping 290, 332

ambiguous 334
as a tree 333
floating 306
issues 291
omitting components 334
rules 334
Variable Window 287
variables 289

scrolling 169
output 208
undoing 229

sctotalview command on SiCortex 154
sctotalviewcli command on SiCortex

154
sctv8 command on SiCortex 154
sctv8cli command on SiCortex 154
Search Path command 61, 73, 74, 75,

124
search order 73, 74

search paths
default lookup order 73
for initialization 58
not passed to other processes 75
order 73
setting 73, 158

–search_port command-line option 91
searching 226

case-sensitive 226
for source code 229
functions 227
locating closest match 226
see also Edit > Find, View > Look-

up Function, View > Lookup
Variable

source code 227
wrapping to front or back 226

searching, variable not found 226

S

430 TotalView User Guide: version 8.8

seeing structures 289
seeing value changes 287

limitationss 288
select button 169
selected line, running to 258
selecting

different stack frame 174
routines 174
source code, by line 251
source line 239
text 180

selecting a target 230
selecting process for a group 278
selection and Expression List window

306
sending signals to program 73
–serial command-line option 100
serial line

baud rate 100
debugging over a 99
radio button 100

server launch 87
command 88
enabling 88
replacement character %C 92

server on each processor 17
–server option 91
server_launch_enabled variable 88,

91, 96
server_launch_string variable 88
server_launch_timeout variable 88
service threads 21, 25
Set Barrier command 365
set expressions 277
set indicator, uses dot 261, 278
Set PC command 251
Set Signal Handling Mode command

159
–set_pw command-line option 97
–set_pw single process server launch

command 93
–set_pws bulk server launch command

94
setting

barrier breakpoint 365
breakpoints 122, 170, 220, 254,

354, 361
breakpoints while running 354
evaluation points 170, 369
groups 270
options 82
preferences 82
search paths 73, 158
thread specific breakpoints 397
timeouts 122

setting focus 259
setting up, debug session 53
setting up, parallel debug session 103,

137
setting up, remote debug session 85

setting X resources 82
SGI, and bulk server launch 94
SGROUP variable 271
shape arrays, deferred types 329
Share > Halt command 231
share groups 24, 237, 264

cell broadband engine 145
defined 23
determining 238
determining members of 238
discussion 237
naming 237
overview 264
S specifier 266

SHARE_ACTION_POINT variable 358,
362, 363

shared libraries 247
controlling which symbols are read

248
loading all symbols 249
loading loader symbols 249
loading no symbols 249
preloading 247
reading excluded information 250

shared library, exclusion list order 249
shared library, specifying name in

scope 334
shared memory library code, see

SHMEM library code debugging
shared variables 138

in OpenMP 139
OpenMP 139, 143
procedure for displaying 139

sharing action points 363
shell, example of invoking CLI program

204
SHLIB_PATH environment variable 59
SHMEM library code debugging 162
$short data type 319
Show full path names check box 229,

359
showing areas of memory 298
SiCortex

installation notes 153
sctotalview command 154
sctotalviewcli command 154
sctv8 command 154
sctv8cli command 154
using TotalView 153

side 385
side-effects of functions in expression

system 385
SIGALRM 136
SIGFPE errors (on SGI) 71
SIGINT signal 112
signal handling mode 71
signal/resignal loop 73
signal_handling_mode variable 71
signals

affected by hardware registers 71

clearing 245
continuing execution with 244
discarding 73
error option 73
handler routine 71
handling 71
handling in PVM applications 159
handling in TotalView 71
handling mode 71
ignore option 73
resend option 73
sending continuation signal 244
SIGALRM 136
SIGTERM 159
stop option 73
stops all related processes 72
that caused core dump 66

Signals command 71
SIGSTOP

used by TotalView 71
when detaching 65

SIGTERM signal 159
stops process 159

SIGTRAP, used by TotalView 71
single process server launch 86, 87, 92
single process server launch command

%D 93
%L 93
%P 93
%R 92
%verbosity 93, 95
–callback_option 93
–n 93
–set_pw 93
–working_directory 93

single-stepping 241, 255
commands 241
in a nested stack frame 258
into function calls 242
not allowed for a parallel region

139
on primary thread only 255
operating system dependencies

243, 244
over function calls 242
recursive functions 243

skipping elements 337
slash in group specifier 266
sleeping state 70
slices 8

defining 336
descriptions 338
examples 336, 337
lower bound 336
of arrays 336
operations using 330
stride elements 336
UPC 163
upper bound 336
with the variable command 338

S

TotalView User Guide: version 8.8 431

SLURM 143
smart stepping, defined 255
SMP machines 106
sockets 99
Sorted Variable Window figure 345
sorting

array data 344
Root Window columns 172

Source As > Assembler 175
Source As > Both 176, 251
Source As > Both command 251
Source As > Source 175
source code

examining 175
finding 227, 229
navigating 229

Source command 175
source file, specifying name in scope

334
source lines

ambiguous 239
editing 229
searching 239
selecting 239

Source Pane 173, 175
source-level breakpoints 354
space allocation

dynamic 373
static 373, 374

spawned processes 211
stopping 107

SPE
defined 144

specifier combinations 266
specifiers

and dfocus 268
and prompt changes 268
example 271
examples 267, 268, 269

specifying groups 265
specifying search directories 75
splitting up work 17
SPU

breakpoints 147
CLI focus 149
naming in TotalView 146
registers 149
thread share groups 146
threads 146
union describing register contents

149
SPU, defined 144
stack

master thread 140
trace, examining 294
unwinding 251

stack context of the OpenMP master
thread 140

stack frame 287
current 229

examining 294
matching 347
pane 174
selecting different 174

Stack Frame Pane 6, 174, 299
stack parent token 143

diving 143
Stack Trace Pane 174, 175, 250

displaying source 178
standard deviation array statistic 346
Standard I/O page 67
standard I/O, altering 67
standard input, and launching tvdsvr

98
Standard Template Library 282
standard template library, see STL
start(), stopping within 160
starting 155

CLI 55, 56, 203
groups 238
parallel tasks 123
TotalView 4, 55, 65, 122
tvdsvr 57, 85, 91, 160
tvdsvr manually 96

starting a new process 61
starting LAM/MPI programs 126
starting MPI programs 104
starting program under CLI control

205
Startup command 57
startup file 59
Startup Parameters command 76
state characters 70
states

and status 69
initializing 59
of processes and threads 69
process and thread 70
unattached process 70

static constructor code 239
static functions, resolving multiple 228
static internal counter 370
static patch space allocation 373, 374
statically linked, stopping in start() 160
statistics for arrays 345
status

and state 69
of processes 68
of threads 68

status registers
examining 252
interpreting 252

Step command 4, 134, 239, 241
“step” commands 242
Step Instruction command 239
stepping

see also single-stepping
apparently hung 134
at process width 256
at thread width 257

goals 256
into 242
multiple statements on a line 242
over 242
primary thread can fail 257
process group 256
processes 134
Run (to selection) Group com-

mand 134
smart 255
target program 212
thread group 256
threads 275
using a numeric argument in CLI

242
workers 275

stepping a group 256
stepping a process 256
stepping commands 239
stepping processes and threads 12
STL 282

list transformation 283
map transformation 282
platforms supported 282

STL preference 283
STLView 282
$stop assembler pseudo op 395
$stop built-in function 398
Stop control group on error check box

73
Stop control group on error signal op-

tion 72
stop execution 4
STOP icon 170, 254, 354, 360

for breakpoints 170, 354
stop, defined in a multiprocess envi-

ronment 213
STOP_ALL variable 358, 362
$stopall built-in function 398
Stopped Execution of Compiled Ex-

pressions figure 373
stopped operator 277
stopped process 367
stopped state 70

unattached process 70
stopping

all related processes 72
groups 132
processes 231
spawned processes 107
threads 231

$stopprocess assembler pseudo op
395

$stopprocess built-in function 398
$stopthread built-in function 398
stride 336

default value of 337
elements 336
in array slices 336
omitting 337

T

432 TotalView User Guide: version 8.8

Stride Displaying the Four Corners of
an Array figure 337

$string data type 319
string assembler pseudo op 396
$string data type 320
structs

see also structures
defined using typedefs 317
how displayed 317

structure information 289
Structured command 296
structures 300, 317

see also structs
collapsing 289
editing types 314
expanding 289
expression evaluation 384
viewing across 348

stty sane command 204
subroutines, displaying 178
subset attach command 132
substructure viewing, limitations 289
suffixes of processes in process

groups 237
suffixes variables 54
sum array statistic 346
Sun MPI 129
Suppress All command 358, 359
suppressing action points 358
surface

in dataset window 189
Surface command (Visualizer) 189
surface view 191, 193

Visualizer 185
surface visualization window 189
surface window, creating 189
suspended windows 391
switch-based communication 121

for PE 121
symbol lookup 333

and context 333
symbol name representation 332
symbol reading, deferring 248
symbol scoping, defined 333
symbol specification, omitting compo-

nents 334
symbol table debugging information

54
symbolic addresses, displaying assem-

bler as 176
Symbolically command 176
symbols

loading all 249
loading loader 249
not loading 249

synchronizing execution 233
synchronizing processes 213, 257, 258
synergistic processor unit 144
syntax 265
system PID 211

system TID 211
system variables, see CLI variables
systid 173, 211
$systid built-in variable 396

T
T state 70
t width specifier 267
T+/T- buttons 232
tag field 360

area 175
Talking to Rank control 131
target process/thread set 212, 259
target program

stepping 212
target, changing 260
tasker event 160
tasks

attaching to 161
diving into 161
PVM 157
starting 123

Tcl
and the CLI 14
CLI and thread lists 202
version based upon 201

Tcl and CLI relationship 203
TCP/IP address, used when starting 57
TCP/IP sockets 99
temp file prototypes 90
templates

expression system 388
lists 282
maps 282
STL 282
vectors 282

terminating processes 206
testing for IEEE values 342
testing when a value changes 376
text

editing 180
locating closest match 226
saving window contents 181
selecting 180

text assembler pseudo op 396
text editor, default 230
third party visualizer 186
thread

width specifier, omitting 274
Thread > Continuation Signal com-

mand 65, 244
Thread > Go command 239
Thread > Hold command 234
Thread > Set PC command 251
thread as dimension in Visualizer 187
thread focus 259
thread group 258

stepping 256
thread groups 23, 257, 264

behavior 270

behavior at goal 257
thread ID 173, 212

system 396
TotalView 396

thread IDs, cell broadband engine 147
thread local storage 141

variables stored in different loca-
tions 141

thread numbers are unique 211
Thread Objects command 331
thread objects, displaying 331
Thread of Interest 238
thread of interest 261, 262

defined 231, 261
thread state 70
thread stepping 275

platforms where allowed 257
Thread Tab 174
THREADPRIVATE common block, pro-

cedure for viewing variables in
141

THREADPRIVATE variables 142
threads

call graph 183
changing 232
changing in Expression List win-

dow 310
changing in Variable window 300
creating 18
displaying manager 172
displaying source 178
diving on 174, 178
finding window for 174
holding 233, 258, 365
ID format 174
listing 173, 174
manager 21
opening window for 174
releasing 233, 364, 365
resuming executing 250
service 21
setting breakpoints in 397
single-stepping 255
stack trace 174
state 68
status of 68
stepping 12
stopping 231
switching between 11
systid 173
tid 173
user 21
width 257
width specifier 262
workers 21, 22

threads model 18
threads tab 232
thread-specific breakpoints 397
tid 173, 212
$tid built-in variable 396

T

TotalView User Guide: version 8.8 433

TID missing in arena 262
timeouts

avoid unwanted 135
during initialization 123
for connection 88
TotalView setting 122

timeouts, setting 122
TOI defined 231

again 253
toolbar, using 230
Tools > Attach Subset command 132
Tools > Call Graph command 183
Tools > Command Line command 55,

203
Tools > Create Checkpoint command

246
Tools > Evaluate command 196, 197,

247, 304, 391, 396
Tools > Evaluate command, see Ex-

pression List window
Tools > Evaluate Dialog Box figure

392, 393
Tools > Evaluate Window

expression system 386
Tools > Expression List Window 306
Tools > Fortran Modules command

327
Tools > Global Arrays command 156
Tools > Manage Shared Libraries

command 247
Tools > Message Queue command

115
Tools > Message Queue Graph com-

mand 11, 113
Tools > Program Browser command

286
Tools > PVM Tasks command 161
Tools > Restart Checkpoint com-

mand 246
Tools > Statistics command 345
Tools > Thread Objects command

331
Tools > Variable Browser command

293
Tools > View Across command 165
Tools > Visualize command 8, 187,

349
Tools > Visualize Distribution com-

mand 164
Tools > Watchpoint command 10,

377, 380
Tools > Watchpoint Dialog Box figure

378
tooltips 285

evaluation within 285
TotalView

and MPICH 106
as PVM tasker 157
core files 55
initializing 58

invoking on UPC 163
programming 14
relationship to CLI 202
starting 4, 55, 65, 122
starting on remote hosts 57
starting the CLI within 203
Visualizer configuration 197

TotalView assembler operators
hi16 394
hi32 394
lo16 394
lo32 394

TotalView assembler pseudo ops
$debug 395
$hold 395
$holdprocess 395
$holdprocessstopall 395
$holdstopall 395
$holdthread 395
$holdthreadstop 395
$holdthreadstopall 395
$holdthreadstopprocess 395
$long_branch 395
$stop 395
$stopall 395
$stopprocess 395
$stopthread 395
align 395
ascii 395
asciz 395
bss 395
byte 395
comm 395
data 395
def 395
double 395
equiv 395
fill 395
float 395
global 395
half 395
lcomm 395
lysm 395
org 395
quad 396
string 396
text 396
word 396
zero 396

totalview command 55, 59, 65, 118,
122, 124, 128

for HP MPI 120
TotalView data types

$address 318
$char 318
$character 318
$code 318, 322
$complex 318
$complex_16 318
$complex_8 318

$double 318
$double_precision 318
$extended 319
$float 319
$int 319
$integer 319
$integer_1 319
$integer_2 319
$integer_4 319
$integer_8 319
$logical 319
$logical_1 319
$logical_2 319
$logical_4 319
$logical_8 319
$long 319
$long_long 319
$real 319
$real_16 319
$real_4 319
$real_8 319
$short 319
$string 319, 320
$void 319, 321
$wchar 319
$wchar_s16 319
$wchar_s32 320
$wchar_u16 320
$wchar_u32 320
$wstring 320
$wstring_s16 320
$wstring_s32 320
$wstring_u16 320
$wstring_u32 320

TotalView Debugger Server, see tvdsvr
TOTALVIEW environment variable 58,

107, 135
totalview subdirectory 59
totalview subdirectory, see .totalview

subdirectory
TotalView windows

action point List tab 175
editing cursor 180

totalviewcli command 55, 56, 57, 59,
65, 124, 128, 203, 205

–remote 57
trackball mode, Visualizer 185
tracking changed values 287

limitations 288
transformations, creating 283
transposing axis 191
TRAP_FPE environment variable on

SGI 71
troubleshooting xxix

MPI 112
ttf variable 283
–tv command-line option 106
TV:: namespace 209
TV::GUI:: namespace 209
TVD.breakpoints file 382

U

434 TotalView User Guide: version 8.8

TVDB_patch_base_address object 374
tvdb_patch_space.s 375
tvdrc file, see .tvdrc initialization file
tvdsvr 57, 85, 87, 89, 98, 100, 372

attaching to 161
–callback command-line option 97
cleanup by PVM 162
Cray XT3 150
editing command line for poe 123
fails in MPI environment 112
launch problems 88, 90
launching 92
launching, arguments 98
manually starting 96
–port command-line option 91
–search_port command-line op-

tion 91
–server command-line option 91
–set_pw command-line option 97
starting 91
starting for serial line 100
starting manually 91, 96
symbolic link from PVM directory

158
with PVM 160

tvdsvr command 91
starting 85
timeout while launching 88, 90
use with PVM applications 158

tvdsvr_rs 150
TVDSVRLAUNCHCMD environment

variable 92
Two Computers Working on One Prob-

lem figure 17
two-dimensional graphs 190
type casting 313

examples 322
type strings

built-in 317
editing 313
for opaque types 322
supported for Fortran 314

type transformation variable 283
type transformations, creating 283
typedefs

defining structs 317
how displayed 317

types supported for C language 314
types, user defined type 329

U
UDT 329
UDWP, see watchpoints
UID, UNIX 91
Unattached page 108
unattached process states 70
undive 301
undive all 301
undive buttons 300
undive icon 179, 228, 300

undive/redive buttons 7
Undive/Redive Buttons figure 301
undiving, from windows 301
unexpected messages 115, 117
unheld operator 277
union operator 277
unions 317

how displayed 317
unique process numbers 211
unique thread numbers 211
unsuppressing action points 359
unwinding the stack 251
UPC

assistant library 163
compilers supported 163
phase 165
pointer-to-shared data 165
shared scalar variables 163
slicing 163
starting 163
viewing shared objects 163

UPC debugging 163
Update command 233
updating visualization displays 187
upper adjacent array statistic 347
upper bounds 316

of array slices 336
USEd information 328
user defined data type 329
user mode 21
user threads 21
Using Assembler figure 393
Using the Attached Page 172

V
v > Process command 347
v > Thread command 347
Valid in Scope list 333
value changes, seeing 287

limitations 288
value field 391
values

changing 180
editing 7

Variable Browser command 293
variable scope 290
variable scoping 333
Variable Window 304

and expression system 385
changing threads 300
closing 300
displaying 285
duplicating 302
expression field 287
in recursion, manually refocus 287
lView Across display 347
rebinding 300
scope 290
scoping display 287
stale in pane header 286

tracking addresses 286
type field 287
updates to 286
view across 349

variables
assigning p/t set to 263
at different addresses 348
bluegene_io_interface 125
bluegene_server_launch 125
CGROUP 264, 270
changing the value 312
changing values of 312
comparing values 291
display width 284
displaying all globals 293
displaying contents 178
displaying long names 287
displaying STL 282
diving 178
freezing 291
GROUP 271
in modules 327
in Stack Frame Pane 7
intrinsic, see built-in functions
locating 226
not updating display 291
precision 284
previewing size and precision 284
setting command output to 207
SGROUP 271
stored in different locations 141
ttf 283
View Across display 347
watching for value changes 10
WGROUP 270

variables and expressions 304
variables, viewing as list 305
–verbosity bulk server launch com-

mand 94
verbosity level 128
–verbosity single process server

launch command 93, 95
View > Add to Expression List com-

mand 305
View > Assembler > By Address com-

mand 176
View > Assembler > Symbolically

command 176
View > Block Status command 297
View > Collapse All command 289
View > Compilation Scope > Fixed

command 290
View > Compilation Scope > Floating

command 287, 290
View > Compilation Scope commands

290
View > Display Exited Threads figure

173
View > Display Managers command

172

W

TotalView User Guide: version 8.8 435

View > Dive command 312
View > Dive In All command 302
View > Dive in New Window command

7
View > Dive Thread command 332
View > Dive Thread New command

332
View > Examaine Format > Struc-

tured command 296
View > Examine Format > Raw com-

mand 296
View > Expand All command 289
View > Freeze command 291
View > Graph command 189
View > Graph command (Visualizer)

189
View > Lookup Function command

160, 226, 229
View > Lookup Variable command

142, 226, 286, 295, 298, 328
specifying slices 338

View > Reset command 228, 229
View > Reset command (Visualizer)

194
View > Source As > Assembler com-

mand 175
View > Source As > Both command

176, 251
View > Source As > Source command

175
View > Surface command (Visualizer)

189
View > View Across > None com-

mand 347
View > View Across > Process com-

mand 347
View > View Across > Thread com-

mand 347
View > View Across > Threads com-

mand 142
View Across

arrays and structures 348
view across

editing data 349
View Across command. 142
View Across None command 347
View simplified STL containers prefer-

ence 283
viewing across

variables 347
Viewing Across an Array of Structures

figure 348
viewing across processes and threads

11
Viewing Across Threads figure 348
Viewing Across Variable Window 349
viewing across variables and process-

es 347
viewing acrosscross

diving in pane 348

viewing assembler 176
viewing existed threads 173
Viewing manager processes 172
Viewing manager threads 172
viewing opaque data 322
viewing shared UPC objects 163
viewing templates 282
viewing variables in lists 305
viewing wide characters 320
virtual functions 387
visualization

deleting a dataset 189
$visualize 398
visualize 196
$visualize built-in function 196
Visualize command 8, 187, 198, 349
visualize command 197
Visualizer 188, 349

actor mode 185, 195
auto reduce option 193
autolaunch options, changing 198
camera mode 185, 195
choosing method for displaying

data 187
command summary 185
configuring 197
configuring launch 197
connecting points using lines 190
creating graph window 189
creating surface window 189
data sets to visualize 186
data types 186
dataset defined 186
dataset window 188, 189
deleting datasets 189
dimensions 187
display not automatically updated

187
displaying points 190
exiting from 189
–file command-line option 197,

198
graphs, display 190
joy stick mode 185
joystick mode 195
launch command, changing shell

198
launch from command line 197
launch options 197
method 187
number of arrays 186
obtaining a dataset value 191
pan 195
–persist command-line option

197, 198
pick 185
picking 195
rank 198
relationship to TotalView 186
restricting data 187

rotate 195
rotate, Visualizer 185

scale 195
shell launch command 198
slices 186
surface display option 193
surface view 185, 191, 193, 195
third party 186
trackball mode 185, 195
using casts 196
view across data 187
view window 188
windows, types of 188
wireframe mode 185
wireframe view 195
XY option 193
zoom 195

visualizer
closing connection to 198
customized command for 197

visualizing
data 185, 189
data sets from a file 197
from variable window 187
in expressions using $visualize 196

visualizing a dataset 196
$void data type 319, 321

W
W state 70
W width specifier 267
W workers group specifiers 266
Waiting for Command to Complete

window 134
Waiting to Complete Message Box fig-

ure 392
warn_step_throw variable 72
watching memory 379
Watchpoint command 10, 377, 380
watchpoint operator 277
watchpoint state 70
watchpoints 10, 375

$newval watchpoint variable 380
$oldval 380
alignment 381
conditional 376, 380
copying data 380
creating 377
defined 213, 352
disabling 378
enabling 378
evaluated, not compiled 381
evaluating an expression 376
example of triggering when value

goes negative 381
length compared to $oldval or

$newval 381
lists of 175
lowest address triggered 379
modifying a memory location 375

X

436 TotalView User Guide: version 8.8

monitoring adjacent locations 380
multiple 379
not saved 382
on stack varaibles 377
PC position 379
platform differences 376
problem with stack variables 379
supported platforms 376
testing a threshold 376
testing when a value changes 376
triggering 375, 379
watching memory 379

$whchar data type 320
wchar_t wide characters 320
WGROUP variable 270
When a job goes parallel or calls exec()

radio buttons 133
When a job goes parallel radio buttons

133
When Done, Stop radio buttons 366
When Hit, Stop radio buttons 366
wide characters 320
width relationships 262
width specifier 261

omitting 274
wildcards, when naming shared librar-

ies 249
Window > Duplicate Base Window (Vi-

sualizer) 190
Window > Duplicate command 179,

291, 302
Window > Memorize All command

180
Window > Memorize command 180
Window > Update command 233
window contents, saving 181
windows 300

closing 179, 300
copying between 181
dataset 189
dataset window 188
dataset window (Visualizer) 190
graph data 190
pasting between 181
popping 178
resizing 179
surface view 191
suspended 391

Windows > Update command (PVM)
161

wireframe view, Visualizer 185
word assembler pseudo op 396
worker threads 21, 138
workers group 25, 258

defined 23
overview 264

workers group specifier 266
working directory 75
working independently 17

–working_directory bulk server launch
command 94

–working_directory single process
server launch command 93

writing array data to files 219
$wstring data type 320

X
X resources setting 82
Xdefaults file, see .Xdefaults file
xterm, launching tvdsvr from 98

Y
yellow highlighted variables 287, 288

Z
Z state 70
zero assembler pseudo op 396
zero count array statistic 347
zombie state 70

	Book Overview
	Contents
	Figures
	TotalView Family Differences
	How to Use This Book
	Using the CLI
	Audience
	Conventions
	TotalView Documentation
	Contacting Us

	Getting Started with TotalView
	Getting Started
	Starting TotalView
	What About Print Statements?
	Examining Data
	Examining Arrays
	Seeing Groups of Variables
	Setting Watchpoints

	Debugging Multi-process and Multi- threaded Programs
	Program Using Almost Any Execution Model
	Supporting Multi-process and Multi-threaded Programs

	Using Groups and Barriers
	Memory Debugging
	Introducing the CLI
	What’s Next

	About Threads, Processes, and Groups
	A Couple of Processes
	Threads
	Complicated Programming Models
	Types of Threads
	Organizing Chaos
	Creating Groups
	Simplifying What You’re Debugging

	Getting Started with Remote Display Client
	Using Remote Display
	Installing the Client
	Installing on Linux
	Installing on Microsoft Windows
	Installing on Apple Mac OS X Intel

	Sample Session
	Naming Intermediate Hosts
	Submitting a Job to a Batch Queuing System

	Setting Up Your Systems and Security
	Session Profile Management
	Sharing Profiles

	Remote Display Server and Viewer
	Batch Scripts
	tv_PBS.csh Script
	tv_LoadLeveler.csh Script

	Remote Display Commands
	Session Profiles Area
	Remote Host and Routing Area
	Product Area
	Using the Submit to Batch Queuing System Entries
	File > Profile > Save
	File > Profile > Delete
	File > Profile > Import
	File > Profile > Export
	File > Exit

	Setting Up a Debugging Session
	Compiling Programs
	Using File Extensions

	Starting TotalView
	Initializing TotalView

	Exiting from TotalView
	Loading Programs
	Loading Programs Using the GUI
	Loading Programs Using the CLI
	Attaching to Processes
	Detaching from Processes
	Examining Core Files
	Setting Command-line Arguments and Environment Variables
	Altering Standard I/O

	Viewing Process and Thread States
	Seeing Attached Process States
	Seeing Unattached Process States

	Handling Signals
	Setting Search Paths
	Setting Startup Parameters
	Setting Preferences
	Setting Preferences, Options, and X Resources

	Setting Up Remote Debugging Sessions
	Setting Up and Starting the TotalView Server
	Setting Single-Process Server Launch Options
	Setting Bulk Launch Window Options

	Starting the TotalView Server Manually
	Using the Single-Process Server Launch Command
	Bulk Server Launch Setting on an SGI Computer
	Setting Bulk Server Launch on an HP Alpha Computer
	Setting Bulk Server Launch on a Cray XT Series Computer
	Setting Bulk Server Launch on an IBM RS/6000 AIX Computer

	Disabling Autolaunch
	Changing the Remote Shell Command
	Changing Arguments
	Autolaunching Sequence

	Debugging Over a Serial Line
	Starting the TotalView Debugger Server
	Using the New Program Window

	Setting Up MPI Debugging Sessions
	Debugging MPI Programs
	Starting MPI Programs
	Starting MPI Programs Using File > New Program

	Debugging MPICH Applications
	Starting TotalView on an MPICH Job
	Attaching to an MPICH Job
	Using MPICH P4 procgroup Files

	Debugging MPICH2 Applications
	Downloading and Configuring MPICH2
	Starting the mpd Daemon
	Starting TotalView Debugging on an MPICH2 Job

	Starting MPI Issues
	MPI Rank Display
	Displaying the Message Queue Graph Window
	Displaying the Message Queue
	About the Message Queue Display
	Using Message Operations
	Diving on MPI Processes
	Diving on MPI Buffers
	About Pending Receive Operations
	About Unexpected Messages
	About Pending Send Operations

	Debugging Cray MPI Applications
	Debugging HP Tru64 Alpha MPI Applications
	Starting TotalView on an HP Alpha MPI Job
	Attaching to an HP Alpha MPI Job

	Debugging HP MPI Applications
	Starting TotalView on an HP MPI Job
	Attaching to an HP MPI Job

	Debugging IBM MPI Parallel Environment (PE) Applications
	Preparing to Debug a PE Application
	Using Switch-Based Communications
	Performing a Remote Login
	Setting Timeouts

	Starting TotalView on a PE Program
	Setting Breakpoints
	Starting Parallel Tasks
	Attaching to a PE Job
	Attaching from a Node Running poe
	Attaching from a Node Not Running poe

	Debugging IBM Blue Gene Applications
	Debugging LAM/MPI Applications
	Debugging QSW RMS Applications
	Starting TotalView on an RMS Job
	Attaching to an RMS Job

	Debugging SiCortex MPI Applications
	Debugging SGI MPI Applications
	Starting TotalView on an SGI MPI Job
	Attaching to an SGI MPI Job
	Using ReplayEngine with SGI MPI

	Debugging Sun MPI Applications
	Attaching to a Sun MPI Job

	Debugging Parallel Applications Tips
	Attaching to Processes
	Parallel Debugging Tips
	MPICH Debugging Tips
	IBM PE Debugging Tips

	Setting Up Parallel Debugging Sessions
	Debugging OpenMP Applications
	Debugging OpenMP Programs
	About TotalView OpenMP Features
	About OpenMP Platform Differences

	Viewing OpenMP Private and Shared Variables
	Viewing OpenMP THREADPRIVATE Common Blocks
	Viewing the OpenMP Stack Parent Token Line

	Using SLURM
	Debugging IBM Cell Broadband Engine Programs
	The PPU
	The SPU
	Cell Programing
	PPU and SPU Executable Organization
	PPU and SPU Executable Naming
	Thread IDs

	Breakpoints
	Registers, Unions, and Casting

	Debugging Cray XT Applications
	Cray XT Catamount
	Configuring TotalView

	Using TotalView
	Cray XT CNL

	Debugging SiCortex Applications
	Installation Notes
	Using TotalView on SiCortex
	MPI Debugging

	Debugging Global Arrays Applications
	Debugging PVM (Parallel Virtual Machine) and DPVM Applications
	Supporting Multiple Sessions
	Setting Up ORNL PVM Debugging
	Starting an ORNL PVM Session
	Starting a DPVM Session
	Automatically Acquiring PVM/DPVM Processes
	Attaching to PVM/DPVM Tasks
	About Reserved Message Tags
	Cleaning Up Processes

	Debugging Shared Memory (SHMEM) Code
	Debugging UPC Programs
	Invoking TotalView
	Viewing Shared Objects
	Displaying Pointer to Shared Variables

	Using TotalView Windows
	Using Mouse Buttons
	Using the Root Window
	Using the Process Window
	Viewing the Assembler Version of Your Code
	Diving into Objects
	Resizing and Positioning Windows and Dialog Boxes
	Editing Text
	Saving the Contents of Windows

	Visualizing Programs and Data
	Displaying Call Graphs
	Visualizing Array Data
	Command Summary
	How the Visualizer Works
	Viewing Data Types in the Visualizer
	Viewing Data

	Visualizing Data Manually
	Using the Visualizer
	Using Dataset Window Commands
	Using View Window Commands

	Using the Graph Window
	Displaying Graph Views

	Using the Surface Window
	Displaying Surface Views
	Manipulating Surface Data

	Visualizing Data Programmatically
	Launching the Visualizer from the Command Line
	Configuring TotalView to Launch the Visualizer
	Setting the Visualizer Launch Command

	Using the CLI
	About the Tcl and the CLI
	About The CLI and TotalView
	Using the CLI Interface

	Starting the CLI
	Startup Example
	Starting Your Program

	About CLI Output
	‘more’ Processing

	Using Command Arguments
	Using Namespaces
	About the CLI Prompt
	Using Built-in and Group Aliases
	How Parallelism Affects Behavior
	Types of IDs

	Controlling Program Execution
	Advancing Program Execution
	Using Action Points

	Seeing the CLI at Work
	Setting the CLI EXECUTABLE_PATH Variable
	Initializing an Array Slice
	Printing an Array Slice
	Writing an Array Variable to a File
	Automatically Setting Breakpoints

	Debugging Programs
	Searching and Looking For Program Elements
	Searching for Text
	Looking for Functions and Variables
	Finding the Source Code for Functions
	Resolving Ambiguous Names

	Finding the Source Code for Files
	Resetting the Stack Frame

	Editing Source Text
	Manipulating Processes and Threads
	Using the Toolbar to Select a Target
	Stopping Processes and Threads
	Using the Processes/Ranks Tab
	Using the Threads Tab
	Updating Process Information
	Holding and Releasing Processes and Threads
	Using Barrier Points
	Holding Problems
	Examining Groups
	Placing Processes in Groups
	Starting Processes and Threads
	Creating a Process Without Starting It
	Creating a Process by Single-Stepping
	Stepping and Setting Breakpoints

	Using Stepping Commands
	Stepping into Function Calls
	Stepping Over Function Calls

	Executing to a Selected Line
	Executing Out of a Function
	Continuing with a Specific Signal
	Killing (Deleting) Programs
	Restarting Programs
	Checkpointing
	Fine-Tuning Shared Library Use
	Preloading Shared Libraries
	Controlling Which Symbols TotalView Reads
	Specifying Which Libraries are Read
	Reading Excluded Information

	Setting the Program Counter
	Interpreting the Status and Control Registers

	Using Groups, Processes, and Threads
	Defining the GOI, POI, and TOI
	Setting a Breakpoint
	Stepping (Part I)
	Understanding Group Widths
	Understanding Process Width
	Understanding Thread Width
	Using Run To and duntil Commands

	Using P/T Set Controls
	Setting Process and Thread Focus
	Understanding Process/Thread Sets
	Specifying Arenas
	Specifying Processes and Threads
	Defining the Thread of Interest (TOI)
	About Process and Thread Widths

	Specifier Examples

	Setting Group Focus
	Specifying Groups in P/T Sets
	About Arena Specifier Combinations
	‘All’ Does Not Always Mean ‘All’
	Setting Groups
	Using the g Specifier: An Extended Example
	Merging Focuses
	Naming Incomplete Arenas
	Naming Lists with Inconsistent Widths

	Stepping (Part II): Examples
	Using P/T Set Operators
	Creating Custom Groups

	Examining and Changing Data
	Changing How Data is Displayed
	Displaying STL Variables
	Changing Size and Precision

	Displaying Variables
	Displaying Program Variables
	Controlling the Information Being Displayed

	Seeing Value Changes
	Seeing Structure Information

	Displaying Variables in the Current Block
	Viewing Variables in Different Scopes as Program Executes
	Scoping Issues

	Freezing Variable Window Data
	Locking the Address
	Browsing for Variables
	Displaying Local Variables and Registers
	Dereferencing Variables Automatically
	Examining Memory
	Displaying Areas of Memory
	Changing Types to Display Machine Instructions

	Displaying Machine Instructions
	Rebinding the Variable Window
	Closing Variable Windows

	Diving in Variable Windows
	Displaying an Array of Structure’s Elements
	Changing What the Variable Window Displays

	Viewing a List of Variables
	Entering Variables and Expressions
	Seeing Variable Value Changes in the Expression List Window
	Entering Expressions into the Expression Column
	Using the Expression List with Multi-process/Multi- threaded Programs
	Reevaluating, Reopening, Rebinding, and Restarting
	Seeing More Information
	Sorting, Reordering, and Editing

	Changing the Values of Variables
	Changing a Variable’s Data Type
	Displaying C and C++ Data Types
	Viewing Pointers to Arrays
	Viewing Arrays
	Viewing typedef Types
	Viewing Structures
	Viewing Unions
	Casting Using the Built-In Types
	Viewing Character Arrays ($string Data Type)
	Viewing Wide Character Arrays ($wchar Data Types)
	Viewing Areas of Memory ($void Data Type)
	Viewing Instructions ($code Data Type)
	Viewing Opaque Data

	Type-Casting Examples
	Displaying Declared Arrays
	Displaying Allocated Arrays
	Displaying the argv Array

	Changing the Address of Variables
	Displaying C++ Types
	Viewing Classes

	Displaying Fortran Types
	Displaying Fortran Common Blocks
	Displaying Fortran Module Data
	Debugging Fortran 90 Modules
	Viewing Fortran 90 User-Defined Types
	Viewing Fortran 90 Deferred Shape Array Types
	Viewing Fortran 90 Pointer Types
	Displaying Fortran Parameters

	Displaying Thread Objects
	Scoping and Symbol Names
	Qualifying Symbol Names

	Examining Arrays
	Examining and Analyzing Arrays
	Displaying Array Slices
	Using Slices and Strides
	Using Slices in the Lookup Variable Command

	Array Slices and Array Sections
	Filtering Array Data Overview
	Filtering by Comparison
	Filtering for IEEE Values
	Filtering a Range of Values
	Creating Array Filter Expressions
	Using Filter Comparisons

	Sorting Array Data
	Obtaining Array Statistics

	Displaying a Variable in all Processes or Threads
	Diving on a “Show Across” Pointer
	Editing a “Show Across” Variable

	Visualizing Array Data
	Visualizing a “Show Across” Variable Window

	Setting Action Points
	About Action Points
	Setting Breakpoints and Barriers
	Setting Source-Level Breakpoints
	Choosing Source Lines

	Setting Breakpoints at Locations
	Ambiguous Functions and Pending Breakpoints

	Displaying and Controlling Action Points
	Disabling Action Points
	Deleting Action Points
	Enabling Action Points
	Suppressing Action Points

	Setting Breakpoints on Classes and Virtual and Overloaded Functions
	Setting Machine-Level Breakpoints
	Setting Breakpoints for Multiple Processes
	Setting Breakpoints When Using the fork()/execve() Functions
	Debugging Processes That Call the fork() Function
	Debugging Processes that Call the execve() Function
	Example: Multi-process Breakpoint

	Setting Barrier Points
	About Barrier Breakpoint States
	Setting a Barrier Breakpoint
	Creating a Satisfaction Set
	Hitting a Barrier Point
	Releasing Processes from Barrier Points
	Deleting a Barrier Point
	Changing Settings and Disabling a Barrier Point

	Defining Eval Points and Conditional Breakpoints
	Setting Eval Points
	Creating Conditional Breakpoint Examples
	Patching Programs
	Branching Around Code
	Adding a Function Call
	Correcting Code

	About Interpreted and Compiled Expressions
	About Interpreted Expressions
	About Compiled Expressions

	Allocating Patch Space for Compiled Expressions
	Allocating Dynamic Patch Space
	Allocating Static Patch Space

	Using Watchpoints
	Using Watchpoints on Different Architectures
	Creating Watchpoints
	Displaying Watchpoints

	Watching Memory
	Triggering Watchpoints
	Using Multiple Watchpoints
	Copying Previous Data Values

	Using Conditional Watchpoints

	Saving Action Points to a File

	Evaluating Expressions
	Why is There an Expression System?
	Calling Functions: Problems and Issues
	Expressions in Eval Points and the Evaluate Window
	Using C++

	Using Programming Language Elements
	Using C and C++
	Using Fortran
	Fortran Statements
	Fortran Intrinsics

	Using the Evaluate Window
	Writing Assembler Code

	Using Built-in Variables and Statements
	Using TotalView Variables
	Using Built-In Statements

	Glossary
	Index

