
CUDA

CURAND Library

PG-05328-032_V01
August, 2010

 NVIDIA Corporation

CURAND Library PG-05328-032_V01

Published by
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING
PROVIDED “AS IS”. NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under
any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously
supplied. NVIDIA Corporation products are not authorized for use as critical components in life support
devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, CUDA, and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation
in the United States and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

© 2005–2010 by NVIDIA Corporation. All rights reserved.

CUDA CURAND Library

Table of Contents
1 CURAND Library 6

Compatibility and Versioning . 6
Host API Overview . 7

Generator Types . 8
Generator Options . 8

Seed . 8
Offset . 9
Order . 9

Return Values . 10
Generation Functions . 10
Host API Example . 12

Device API Overview . 13
Pseudorandom Sequences 13

Bit Generation 14
Distributions . 15

Quasirandom Sequences 16
Skip-Ahead . 17
Performance Notes . 18
Device API Example . 19

References . 22

2 CURAND Reference 23
2.1 Host API . 23

2.1.1 Typedef Documentation 25
2.1.1.1 curandDirectionVectors32_t 25
2.1.1.2 curandDirectionVectorSet_t 25
2.1.1.3 curandGenerator_t 25
2.1.1.4 curandOrdering_t 26
2.1.1.5 curandRngType_t 26
2.1.1.6 curandStatus_t 26

2.1.2 Enumeration Type Documentation 26
2.1.2.1 curandDirectionVectorSet 26
2.1.2.2 curandOrdering 26
2.1.2.3 curandRngType 27

PG-05328-032_V01 NVIDIA 3

CUDA CURAND Library

2.1.2.4 curandStatus . 27
2.1.3 Function Documentation 28

2.1.3.1 curandCreateGenerator 28
2.1.3.2 curandCreateGeneratorHost 29
2.1.3.3 curandDestroyGenerator 30
2.1.3.4 curandGenerate 30
2.1.3.5 curandGenerateNormal 31
2.1.3.6 curandGenerateNormalDouble 32
2.1.3.7 curandGenerateSeeds 34
2.1.3.8 curandGenerateUniform 34
2.1.3.9 curandGenerateUniformDouble 35
2.1.3.10 curandGetDirectionVectors32 36
2.1.3.11 curandGetVersion 37
2.1.3.12 curandSetGeneratorOffset 37
2.1.3.13 curandSetGeneratorOrdering 38
2.1.3.14 curandSetPseudoRandomGeneratorSeed 38
2.1.3.15 curandSetQuasiRandomGeneratorDimensions 39
2.1.3.16 curandSetStream 40

2.2 Device API . 40
2.2.1 Typedef Documentation 42

2.2.1.1 curandState_t . 42
2.2.1.2 curandStateSobol32_t 42
2.2.1.3 curandStateXORWOW_t 42

2.2.2 Function Documentation 42
2.2.2.1 curand . 42
2.2.2.2 curand . 43
2.2.2.3 curand_init . 43
2.2.2.4 curand_init . 44
2.2.2.5 curand_normal 44
2.2.2.6 curand_normal 45
2.2.2.7 curand_normal2 45
2.2.2.8 curand_normal2_double 46
2.2.2.9 curand_normal_double 46
2.2.2.10 curand_normal_double 47
2.2.2.11 curand_uniform 47

PG-05328-032_V01 NVIDIA 4

CUDA CURAND Library

2.2.2.12 curand_uniform 48
2.2.2.13 curand_uniform_double 48
2.2.2.14 curand_uniform_double 49
2.2.2.15 skipahead . 49
2.2.2.16 skipahead . 49
2.2.2.17 skipahead_sequence 50

PG-05328-032_V01 NVIDIA 5

CUDA CURAND Library

CURAND Library

The CURAND library provides facilities that focus on the simple and effi-
cient generation of high-quality pseudorandom and quasirandom numbers.
A pseudorandom sequence of numbers satisfies most of the statistical proper-
ties of a truly random sequence but is generated by a deterministic algorithm.
A quasirandom sequence of n-dimensional points is generated by a determin-
istic algorithm designed to fill an n-dimensional space evenly.

CURAND consists of two pieces: a library on the host (CPU) side and a device
(GPU) header file. The host-side library is treated like any other CPU library:
users include the header file, /include/curand.h, to get function declara-
tions and then link against the library. Random numbers can be generated on
the device or on the host CPU. For device generation, calls to the library hap-
pen on the host, but the actual work of random number generation occurs on
the device. The resulting random numbers are stored in global memory on
the device. Users can then call their own kernels to use the random numbers,
or they can copy the random numbers back to the host for further processing.
For host CPU generation, all of the work is done on the host, and the random
numbers are stored in host memory.

The second piece of CURAND is the device header file, /include/
curand_kernel.h. This file defines device functions for setting up random
number generator states and generating sequences of random numbers. User
code may include this header file, and user-written kernels may then call the
device functions defined in the header file. This allows random numbers to
be generated and immediately consumed by user kernels without requiring
the random numbers to be written to and then read from global memory.

Compatibility and Versioning

The host API of CURAND is intended to be backward compatible at the
source level with future releases (unless stated otherwise in the release notes
of a specific future release). In other words, if a program uses CURAND, it

PG-05328-032_V01 NVIDIA 6

CUDA CURAND Library

should continue to compile and work correctly with newer versions of CU-
RAND without source code changes.

CURAND is not guaranteed to be backward compatible at the binary level.
Using a different version of the curand.h header file and the shared library is
not supported. Using different versions of CURAND and the CUDA runtime
is not supported.

The device API should be backward compatible at the source level for public
functions in most cases.

Host API Overview

To use the host API, user code should include the library header file
curand.h and dynamically link against the CURAND library. The library
uses the CUDA runtime, so user code must also use the runtime. The CUDA
driver API is not supported by CURAND.

Random numbers are produced by generators. A generator in CURAND en-
capsulates all the internal state necessary to produce a sequence of pseudo-
random or quasirandom numbers. The normal sequence of operations is as
follows:

1. Create a new generator of the desired type (see Generator Types on
page 8) with curandCreateGenerator().

2. Set the generator options (see Generator Options on page 8); for ex-
ample, use curandSetPseudoRandomGeneratorSeed() to set the
seed.

3. Allocate memory on the device with cudaMalloc().
4. Generate random numbers with curandGenerate() or another gen-

eration function.
5. Use the results.
6. If desired, generate more random numbers with more calls to

curandGenerate().
7. Clean up with curandDestroyGenerator().

PG-05328-032_V01 NVIDIA 7

CUDA CURAND Library

To generate random numbers on the host CPU, in step one above call
curandCreateGeneratorHost(), and in step three, allocate a host mem-
ory buffer to receive the results. All other calls work identically whether you
are generating random numbers on the device or on the host CPU.

It is legal to create several generators at the same time. Each generator en-
capsulates a separate state and is independent of all other generators. The
sequence of numbers produced by each generator is deterministic. Given the
same set-up parameters, the same sequence will be generated with every run
of the program. Generating random numbers on the device will result in the
same sequence as generating them on the host CPU.

Note that it is not valid to pass a host memory pointer to a generator that is
running on the device, and it is not valid to pass a device memory pointer to
a generator that is running on the CPU. Behavior in these cases is undefined.

Generator Types

Random number generators are created by passing a type to
curandCreateGenerator(). There are two types of random number
generators in CURAND. Type CURAND_RNG_XORWOW is a pseudorandom
number generator implemented using the XORWOW algorithm, a member
of the xor-shift family of pseudorandom number generators. CURAND_RNG_-
SOBOL32 is a quasirandom number generator type. It is a Sobol’ generator
of 32-bit sequences in up to 20,000 dimensions.

Generator Options

Once created, random number generators can be defined using the general
options seed, offset, and order.

Seed

The seed parameter is a 64-bit integer that initializes the starting state of a
pseudorandom number generator. The same seed always produces the same
sequence of results.

PG-05328-032_V01 NVIDIA 8

CUDA CURAND Library

Offset

The offset parameter is used to skip ahead in the sequence. If offset = 100, the
first random number generated will be the 100th in the sequence. This allows
multiple runs of the same program to continue generating results from the
same sequence without overlap.

Order

The order parameter is used to choose how the results are ordered
in global memory. There are two ordering choice for pseudoran-
dom sequences: CURAND_ORDERING_PSEUDO_DEFAULT and CURAND_-
ORDERING_PSEUDO_BEST. There is one ordering choice for quasiran-
dom numbers, CURAND_ORDERING_QUASI_DEFAULT. The default order-
ing for pseudorandom number generators is CURAND_ORDERING_PSEUDO_-
DEFAULT, while the default ordering for quasirandom number generators is
CURAND_ORDERING_QUASI_DEFAULT.

Currently, both pseudorandom number choices produce the same output or-
dering. However, future releases of CURAND may change the ordering as-
sociated with CURAND_ORDERING_PSEUDO_BEST to improve either perfor-
mance or the quality of the results. It will always be the case that the order-
ing obtained with CURAND_ORDERING_PSEUDO_BEST is deterministic and is
the same for each run of the program. The ordering returned by CURAND_-
ORDERING_PSEUDO_DEFAULT is guaranteed to remain the same for all CU-
RAND releases.

The behavior of the three ordering parameters is summarized below:

o CURAND_ORDERING_PSEUDO_BEST (pseudorandom numbers)
The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same
as CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

o CURAND_ORDERING_PSEUDO_DEFAULT (pseudorandom numbers)
The result at offset n in global memory is from position

(n mod 4096) · 267 + bn/4096c

in the original XORWOW sequence.

PG-05328-032_V01 NVIDIA 9

CUDA CURAND Library

o CURAND_ORDERING_QUASI_DEFAULT (quasirandom numbers)
When generating n results in d dimensions, the output will consist of
n/d results from dimension 1, followed by n/d results from dimension
2, and so on up to dimension d. Only exact multiples of the dimen-
sion size may be generated. The dimension parameter d is set with
curandSetQuasiRandomGeneratorDimensions() and defaults to
1.

Return Values

All CURAND host library calls have a return value of curandStatus_t.
Calls that succeed without errors return CURAND_STATUS_SUCCESS. If errors
occur, other values are returned depending on the error. Because CUDA
allows kernels to execute asynchronously from CPU code, it is possible that
errors in a non-CURAND kernel will be detected during a call to a library
function. In this case, CURAND_STATUS_PREEXISTING_ERROR is returned.

Generation Functions

curandStatus_t
curandGenerate(

curandGenerator_t generator,
unsigned int *outputPtr, size_t num)

The curandGenerate() function is used to generate pseudo- or quasiran-
dom bits of output. Each output element is a 32-bit unsigned int where all
bits are random.

curandStatus_t
curandGenerateUniform(

curandGenerator_t generator,
float *outputPtr, size_t num)

The curandGenerateUniform() function is used to generate uniformly
distributed floating point values between 0.0 and 1.0, where 0.0 is excluded

PG-05328-032_V01 NVIDIA 10

CUDA CURAND Library

and 1.0 is included.

curandStatus_t
curandGenerateNormal(

curandGenerator_t generator,
float *outputPtr, size_t n,
float mean, float stddev)

The curandGenerateNormal() function is used to generate normally dis-
tributed floating point values with the given mean and standard deviation.

For quasirandom generation, the number of results returned must be a mul-
tiple of the dimension of the generator.

Generation functions can be called multiple times on the same generator to
generate successive blocks of results. For pseudorandom generators, mul-
tiple calls to generation functions will yield the same result as a single call
with a large size. For quasirandom generators, because of the ordering of
dimensions in memory, many shorter calls will not produce the same results
in memory as one larger call; however the generated n-dimensional vectors
will be the same.

curandStatus_t
curandGenerateUniformDouble(

curandGenerator_t generator,
double *outputPtr, size_t num)

curandStatus_t
curandGenerateNormalDouble(

curandGenerator_t generator,
double *outputPtr, size_t n,
double mean, double stddev)

The function curandGenerateUniformDouble() generates uniformly
distributed random numbers in double precision. The function
curandGenerateNormalDouble() generates normally distributed results

PG-05328-032_V01 NVIDIA 11

CUDA CURAND Library

in double precision with the given mean and standard deviation. Double pre-
cision results can only be generated on devices of compute capability 1.3 or
above, and the host.

Host API Example

/*
* This program uses the host CURAND API to generate 100

* pseudorandom floats.

*/
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <curand.h>

#define CUDA_CALL(x) do { if((x) != cudaSuccess) { \
printf("Error at %s:%d\n",__FILE__,__LINE__);\
return EXIT_FAILURE;}} while(0)

#define CURAND_CALL(x) do { if((x) != CURAND_STATUS_SUCCESS) { \
printf("Error at %s:%d\n",__FILE__,__LINE__);\
return EXIT_FAILURE;}} while(0)

int main(int argc, char *argv[])
{

size_t n = 100;
size_t i;
curandGenerator_t gen;
float *devData, *hostData;

/* Allocate n floats on host */
hostData = (float *)calloc(n, sizeof(float));

/* Allocate n floats on device */
CUDA_CALL(cudaMalloc((void **)&devData, n * sizeof(float)));

/* Create pseudo-random number generator */
CURAND_CALL(curandCreateGenerator(&gen,

CURAND_RNG_PSEUDO_DEFAULT));

PG-05328-032_V01 NVIDIA 12

CUDA CURAND Library

/* Set seed */
CURAND_CALL(curandSetPseudoRandomGeneratorSeed(gen, 1234ULL));

/* Generate n floats on device */
CURAND_CALL(curandGenerateUniform(gen, devData, n));

/* Copy device memory to host */
CUDA_CALL(cudaMemcpy(hostData, devData, n * sizeof(float),

cudaMemcpyDeviceToHost));

/* Show result */
for(i = 0; i < n; i++) {

printf("%1.4f ", hostData[i]);
}
printf("\n");

/* Cleanup */
CURAND_CALL(curandDestroyGenerator(gen));
CUDA_CALL(cudaFree(devData));
free(hostData);
return EXIT_SUCCESS;

}

Device API Overview

To use the device API, include the file curand_kernel.h in files that de-
fine kernels that use CURAND device functions. The device API includes
functions for Pseudorandom Sequences and Quasirandom Sequences.

Pseudorandom Sequences

The functions for pseudorandom sequences support bit generation and gen-
eration from distributions.

PG-05328-032_V01 NVIDIA 13

CUDA CURAND Library

Bit Generation

__device__ unsigned int
curand (curandState *state)

Following a call to curand_init(), curand() returns a sequence of
pseudorandom numbers with a period greater than 2190. If curand() is
called with the same initial state each time, and the state is not modified
between the calls to curand(), the same sequence is always generated.

__device__ void
curand_init (

unsigned long long seed, unsigned long long sequence,
unsigned long long offset, curandState *state)

The curand_init() function sets up an initial state allocated by the caller
using the given seed, sequence number, and offset within the sequence. Dif-
ferent seeds are guaranteed to produce different starting states and different
sequences. The same seed always produces the same state and the same se-
quence. The state set up will be the state after 267 · sequence+ offset calls
to curand() from the seed state.

Sequences generated with different seeds usually do not have statistically
correlated values, but some choices of seeds may give statistically correlated
sequences. Sequences generated with the same seed and different sequence
numbers will not have statistically correlated values.

For optimal parallel pseudorandom number generation, each experiment
should be assigned a unique seed. Within an experiment, each thread of
computation should be assigned a unique sequence number. If an experi-
ment spans multiple kernel launches, it is recommended that threads between
kernel launches be given the same seed, and sequence numbers be assigned
in a monotonically increasing way. If the same configuration of threads is
launched, random state can be preserved in global memory between launches
to avoid state setup time.

PG-05328-032_V01 NVIDIA 14

CUDA CURAND Library

Distributions

__device__ float
curand_uniform (curandState *state)

This function returns a sequence of pseudorandom floats uniformly dis-
tributed between 0.0 and 1.0. It may return from 0.0 to 1.0, where 1.0 is
included and 0.0 is excluded. Distribution functions may use any number
of unsigned integer values from a basic generator. The number of values
consumed is not guaranteed to be fixed.

__device__ float
curand_normal (curandState *state)

This function returns a single normally distributed float with mean 0.0 and
standard deviation 1.0. This result can be scaled and shifted to produce nor-
mally distributed values with any mean and standard deviation.

__device__ double
curand_uniform_double (curandState *state)

__device__ double
curand_normal_double (curandState *state)

The two functions above are the double precision versions of curand_-
uniform() and curand_normal(). The double precisions pseudorandom
functions use multiple calls to curand() to generate 53 random bits.

__device__ float2
curand_normal2 (curandState *state)

__device__ double2
curand_normal2_double (curandState *state)

PG-05328-032_V01 NVIDIA 15

CUDA CURAND Library

The above functions generate two normally distributed pseudorandom results
with each call. Because the underlying implementation uses the Box-Muller
transform, this is generally more efficient than generating a single result with
each call.

Quasirandom Sequences

Although the default generator type is pseudorandom numbers from XOR-
WOW, Sobol’ sequences can be generated using the following functions:

__device__ void
curand_init (

unsigned int *direction_vectors,
unsigned int offset,
curandStateSobol32 *state)

__device__ unsigned int
curand (curandStateSobol32 *state)

__device__ float
curand_uniform (curandStateSobol32 *state)

__device__ float
curand_normal (curandStateSobol32 *state)

__device__ double
curand_uniform_double (curandStateSobol32 *state)

__device__ double
curand_normal_double (curandStateSobol32 *state)

The curand_init() function sets up a quasirandom number generator state
of type curandStateSobol32. There is no seed parameter, only direction
vectors and offset. The direction vectors are an array of 32 unsigned integer

PG-05328-032_V01 NVIDIA 16

CUDA CURAND Library

values. For the curandStateSobol32 type, the sequence is exactly 232 el-
ements long where each element is 32 bits. Each call to curand() returns
the next quasirandom element. Calls to curand_uniform() return quasi-
random floats from 0.0 to 1.0, where 1.0 is included and 0.0 is excluded.
Similarly, calls to curand_normal() return normally distributed floats with
mean 0.0 and standard deviation 1.0.

As an example, generating quasirandom coordinates that fill a unit cube re-
quires keeping track of three quasirandom generators. All three would start at
offset = 0 and would have dimensions 0, 1, and 2, respectively. A single call
to curand_uniform() for each generator state would generate the x, y, and
z coordinates. Tables of direction vectors are accessible on the host through
the curandGetDirectionVectors32() function, see Section 2.1.3.10. The
direction vectors needed should be copied into device memory before use.

The normal distribution functions for quasirandom generation use the inverse
cumulative density function to preserve the dimensionality of the quasiran-
dom sequence. Therefore there are no functions that generate more than one
result at a time as there are with the pseudorandom generators.

The double precision Sobol32 functions return results in double precision that
use 32 bits of internal precision from the underlying generator.

Skip-Ahead

There are several functions to skip ahead from a generator state.

__device__ void
skipahead (unsigned long long n, curandState *state)

__device__ void
skipahead (unsigned int n, curandStateSobol32_t *state)

Using this function is equivalent to calling curand() n times without using
the return value, but it is much faster.

PG-05328-032_V01 NVIDIA 17

CUDA CURAND Library

__device__ void
skipahead_sequence (unsigned long long n, curandState *state)

This function is the equivalent of calling curand() n · 267 times without using
the return value and is much faster.

Performance Notes

Calls to curand_init() are much slower than calls to curand() or
curand_uniform(). Large offsets to curand_init() take more time than
smaller offsets. It is much faster to save and restore random generator state
than to recalculate the starting state repeatedly.

As shown below, generator state can be stored in global memory between
kernel launches, used in local memory for fast generation, and then stored
back into global memory.

__global__ void example(curandState *global_state)
{

curandState local_state;
local_state = global_state[threadIdx.x];
for(int i = 0; i < 10000; i++) {

unsigned int x = curand(&local_state);
...

}
global_state[threadIdx.x] = local_state;

}

Initialization of the random generator state generally requires more registers
and local memory than random number generation. It may be beneficial to
separate calls to curand_init() and curand() into separate kernels for
maximum performance.

On Fermi architectures and later, users should explicitly set the stack
size with cudaThreadSetLimit(cudaLimitStackSize, size) to avoid
stack overflow problems. The default stack size is 1KB per thread. Initializing

PG-05328-032_V01 NVIDIA 18

CUDA CURAND Library

random number generator state can require in the worst case up to 16KB of lo-
cal memory space allocated on the stack per thread. The stack size set should
be large enough to accomodate this need in addition to any stack space that
may be used by the calling kernel. Once the state has been set up, random
number generation itself requires very little stack space.

Device API Example

This example uses the device API to calculate the proportion of pseudoran-
dom integers that have the low bit set.

/*
* This program uses the device CURAND API to calculate what

* proportion of pseudo-random ints have low bit set.

*/
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <curand_kernel.h>

#define CUDA_CALL(x) do { if((x) != cudaSuccess) { \
printf("Error at %s:%d\n",__FILE__,__LINE__); \
return EXIT_FAILURE;}} while(0)

__global__ void setup_kernel(curandState *state)
{

int id = threadIdx.x + blockIdx.x * 64;
/* Each thread gets same seed, a different sequence number,

no offset */
curand_init(1234, id, 0, &state[id]);

}

__global__ void generate_kernel(curandState *state, int *result)
{

int id = threadIdx.x + blockIdx.x * 64;
int count = 0;
unsigned int x;
/* Copy state to local memory for efficiency */

PG-05328-032_V01 NVIDIA 19

CUDA CURAND Library

curandState localState = state[id];
/* Generate pseudo-random unsigned ints */
for(int n = 0; n < 100000; n++) {

x = curand(&localState);
/* Check if low bit set */
if(x & 1) {

count++;
}

}
/* Copy state back to global memory */
state[id] = localState;
/* Store results */
result[id] += count;

}

int main(int argc, char *argv[])
{

int i, total;
curandState *devStates;
int *devResults, *hostResults;

/* Allocate space for results on host */
hostResults = (int *)calloc(64 * 64, sizeof(int));

/* Allocate space for results on device */
CUDA_CALL(cudaMalloc((void **)&devResults, 64 * 64 * sizeof(int)));

/* Set results to 0 */
CUDA_CALL(cudaMemset(devResults, 0, 64 * 64 * sizeof(int)));

/* Allocate space for prng states on device */
CUDA_CALL(cudaMalloc((void **)&devStates, 64 * 64 *

sizeof(curandState)));

/* Setup prng states */
setup_kernel<<<64, 64>>>(devStates);

/* Generate and use pseudo-random */
for(i = 0; i < 10; i++) {

generate_kernel<<<64, 64>>>(devStates, devResults);

PG-05328-032_V01 NVIDIA 20

CUDA CURAND Library

}

/* Copy device memory to host */
CUDA_CALL(cudaMemcpy(hostResults, devResults, 64 * 64 *

sizeof(int), cudaMemcpyDeviceToHost));

/* Show result */
total = 0;
for(i = 0; i < 64 * 64; i++) {

total += hostResults[i];
}
printf("Fraction with low bit set was %10.13f\n",

(float)total / (64.0f * 64.0f * 100000.0f * 10.0f));

/* Cleanup */
CUDA_CALL(cudaFree(devStates));
CUDA_CALL(cudaFree(devResults));
free(hostResults);
return EXIT_SUCCESS;

}

PG-05328-032_V01 NVIDIA 21

CUDA CURAND Library

References

The XORWOW generator was proposed by Marsaglia [1] and has been tested
using the TestU01 "Crush" framework of tests [2]. The full suite of NIST pseu-
dorandomness tests [3] has also been run. Sobol’ sequences are generated
using the direction vectors recommended by Joe and Kuo [4].

[1] George Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14),
2003. Available at http://www.jstatsoft.org/v08/i14/paper.

[2] Pierre L’Ecuyer and Richard Simard. TestU01: A C library for empirical
testing of random number generators. ACM Transactions on Mathematical
Software, 33(4), August 2007.

[3] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker,
Stefan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heck-
ert, James Dray, and San Vo. A statistical test suite for the validation of
random number generators and pseudorandom number generators for
cryptographic applications. Special Publication 800-22 Revision 1a, Na-
tional Institute of Standards and Technology, April 2010. Available at
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html.

[4] S. Joe and F. Y. Kuo. Remark on algorithm 659: Implementing sobol’s
quasirandom sequence generator. ACM Transactions on Mathematical Soft-
ware, 29:49–57, March 2003.

PG-05328-032_V01 NVIDIA 22

http://www.jstatsoft.org/v08/i14/paper
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

CUDA CURAND Library

CURAND Reference

2.1 Host API

Functions

o curandStatus_t curandCreateGenerator (curandGenerator_t ∗generator,
curandRngType_t rng_type)

Create new random number generator.

o curandStatus_t curandCreateGeneratorHost (curandGenerator_t
∗generator, curandRngType_t rng_type)

Create new host CPU random number generator.

o curandStatus_t curandDestroyGenerator (curandGenerator_t genera-
tor)

Destroy an existing generator.

o curandStatus_t curandGenerate (curandGenerator_t generator, un-
signed int ∗outputPtr, size_t num)

Generate 32-bit pseudo or quasirandom numbers.

o curandStatus_t curandGenerateNormal (curandGenerator_t generator,
float ∗outputPtr, size_t n, float mean, float stddev)

Generate normally distributed floats.

o curandStatus_t curandGenerateNormalDouble (curandGenerator_t
generator, double ∗outputPtr, size_t n, double mean, double stddev)

Generate normally distributed doubles.

o curandStatus_t curandGenerateSeeds (curandGenerator_t generator)
Setup starting states.

o curandStatus_t curandGenerateUniform (curandGenerator_t generator,
float ∗outputPtr, size_t num)

Generate uniformly distributed floats.

o curandStatus_t curandGenerateUniformDouble (curandGenerator_t
generator, double ∗outputPtr, size_t num)

PG-05328-032_V01 NVIDIA 23

CUDA CURAND Library

Generate uniformly distributed doubles.

o curandStatus_t curandGetDirectionVectors32 (curandDirectionVec-
tors32_t ∗vectors[], curandDirectionVectorSet_t set)

Get direction vectors for quasirandom number generation.

o curandStatus_t curandGetVersion (int ∗version)
Return the version number of the library.

o curandStatus_t curandSetGeneratorOffset (curandGenerator_t genera-
tor, unsigned long long offset)

Set the absolute offset of the pseudo or quasirandom number generator.

o curandStatus_t curandSetGeneratorOrdering (curandGenerator_t gen-
erator, curandOrdering_t order)

Set the ordering of results of the pseudo or quasirandom number generator.

o curandStatus_t curandSetPseudoRandomGeneratorSeed (curandGen-
erator_t generator, unsigned long long seed)

Set the seed value of the pseudo-random number generator.

o curandStatus_t curandSetQuasiRandomGeneratorDimensions (curand-
Generator_t generator, unsigned int num_dimensions)

Set the number of dimensions.

o curandStatus_t curandSetStream (curandGenerator_t generator, cudaS-
tream_t stream)

Set the current stream for CURAND kernel launches.

o enum curandDirectionVectorSet { CU-
RAND_DIRECTION_VECTORS_32_JOEKUO6 = 101 }

o enum curandOrdering {
CURAND_ORDERING_PSEUDO_BEST = 100,
CURAND_ORDERING_PSEUDO_DEFAULT = 101,
CURAND_ORDERING_QUASI_DEFAULT = 201 }

o enum curandRngType {
CURAND_RNG_PSEUDO_DEFAULT = 100,
CURAND_RNG_PSEUDO_XORWOW = 101,

PG-05328-032_V01 NVIDIA 24

CUDA CURAND Library

CURAND_RNG_QUASI_DEFAULT = 200,
CURAND_RNG_QUASI_SOBOL32 = 201 }

o enum curandStatus {
CURAND_STATUS_SUCCESS = 0,
CURAND_STATUS_VERSION_MISMATCH = 100,
CURAND_STATUS_NOT_INITIALIZED = 101,
CURAND_STATUS_ALLOCATION_FAILED = 102,
CURAND_STATUS_TYPE_ERROR = 103,
CURAND_STATUS_OUT_OF_RANGE = 104,
CURAND_STATUS_LENGTH_NOT_MULTIPLE = 105,
CURAND_STATUS_LAUNCH_FAILURE = 201,
CURAND_STATUS_PREEXISTING_FAILURE = 202,
CURAND_STATUS_INITIALIZATION_FAILED = 203,
CURAND_STATUS_ARCH_MISMATCH = 204,
CURAND_STATUS_INTERNAL_ERROR = 999 }

o typedef unsigned int curandDirectionVectors32_t [32]
o typedef enum curandDirectionVectorSet curandDirectionVectorSet_t
o typedef struct curandGenerator_st ∗ curandGenerator_t
o typedef enum curandOrdering curandOrdering_t
o typedef enum curandRngType curandRngType_t
o typedef enum curandStatus curandStatus_t

2.1.1 Typedef Documentation

2.1.1.1 typedef unsigned int curandDirectionVectors32_t[32]

CURAND array of 32-bit direction vectors

2.1.1.2 typedef enum curandDirectionVectorSet
curandDirectionVectorSet_t

CURAND choice of direction vector set

2.1.1.3 typedef struct curandGenerator_st∗ curandGenerator_t

CURAND generator

PG-05328-032_V01 NVIDIA 25

CUDA CURAND Library

2.1.1.4 typedef enum curandOrdering curandOrdering_t

CURAND orderings of results in memory

2.1.1.5 typedef enum curandRngType curandRngType_t

CURAND generator types

2.1.1.6 typedef enum curandStatus curandStatus_t

CURAND function call status types

2.1.2 Enumeration Type Documentation

2.1.2.1 enum curandDirectionVectorSet

CURAND choice of direction vector set

Enumerator:

CURAND_DIRECTION_VECTORS_32_JOEKUO6 Specific set of 32-
bit direction vectors generated from polynomials recommended by
S. Joe and F. Y. Kuo, for up to 20,000 dimensions.

2.1.2.2 enum curandOrdering

CURAND orderings of results in memory

Enumerator:

CURAND_ORDERING_PSEUDO_BEST Best ordering for pseudoran-
dom results.

CURAND_ORDERING_PSEUDO_DEFAULT Specific default 4096
thread sequence for pseudorandom results.

CURAND_ORDERING_QUASI_DEFAULT Specific n-dimensional
ordering for quasirandom results.

PG-05328-032_V01 NVIDIA 26

CUDA CURAND Library

2.1.2.3 enum curandRngType

CURAND generator types

Enumerator:

CURAND_RNG_PSEUDO_DEFAULT Default pseudorandom genera-
tor.

CURAND_RNG_PSEUDO_XORWOW XORWOW pseudorandom
generator.

CURAND_RNG_QUASI_DEFAULT Default quasirandom generator.
CURAND_RNG_QUASI_SOBOL32 Sobol32 quasirandom generator.

2.1.2.4 enum curandStatus

CURAND Host API datatypes CURAND function call status types

Enumerator:

CURAND_STATUS_SUCCESS No errors.
CURAND_STATUS_VERSION_MISMATCH Header file and linked

library version do not match.
CURAND_STATUS_NOT_INITIALIZED Generator not initialized.
CURAND_STATUS_ALLOCATION_FAILED Memory allocation

failed.
CURAND_STATUS_TYPE_ERROR Generator is wrong type.
CURAND_STATUS_OUT_OF_RANGE Argument out of range.
CURAND_STATUS_LENGTH_NOT_MULTIPLE Length requested is

not a multple of dimension.
CURAND_STATUS_LAUNCH_FAILURE Kernel launch failure.
CURAND_STATUS_PREEXISTING_FAILURE Preexisting failure on

library entry.
CURAND_STATUS_INITIALIZATION_FAILED Initialization of

CUDA failed.
CURAND_STATUS_ARCH_MISMATCH Architecture mismatch, GPU

does not support requested feature.
CURAND_STATUS_INTERNAL_ERROR Internal library error.

PG-05328-032_V01 NVIDIA 27

CUDA CURAND Library

2.1.3 Function Documentation

2.1.3.1 curandStatus_t curandCreateGenerator (curandGenerator_t
∗ generator, curandRngType_t rng_type)

Creates a new random number generator of type rng_type and returns it
in ∗generator.

Legal values for rng_type are:

o CURAND_RNG_PSEUDO_DEFAULT
o CURAND_RNG_PSEUDO_XORWOW
o CURAND_RNG_QUASI_DEFAULT
o CURAND_RNG_QUASI_SOBOL32

When rng_type is CURAND_RNG_PSEUDO_DEFAULT, the type chosen
is CURAND_RNG_PSEUDO_XORWOW.

When rng_type is CURAND_RNG_QUASI_DEFAULT, the type chosen is
CURAND_RNG_QUASI_SOBOL32.

The default values for rng_type = CURAND_RNG_PSEUDO_XORWOW
are:

o seed = 0
o offset = 0
o ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL32 are:

o dimensions = 1
o offset = 0
o ordering = CURAND_ORDERING_QUASI_DEFAULT

Parameters:

generator - Pointer to generator
rng_type - Type of generator to create

Returns:

CURAND_STATUS_ALLOCATION_FAILED if memory could not be

PG-05328-032_V01 NVIDIA 28

CUDA CURAND Library

allocated
CURAND_STATUS_INITIALIZATION_FAILED if there was a problem
setting up the GPU
CURAND_STATUS_VERSION_MISMATCH if the header file version
does not match the dynamically linked library version
CURAND_STATUS_TYPE_ERROR if the value for rng_type is invalid
CURAND_STATUS_SUCCESS if generator was created successfully

2.1.3.2 curandStatus_t curandCreateGeneratorHost
(curandGenerator_t ∗ generator, curandRngType_t rng_type)

Creates a new host CPU random number generator of type rng_type and
returns it in ∗generator.

Legal values for rng_type are:

o CURAND_RNG_PSEUDO_DEFAULT
o CURAND_RNG_PSEUDO_XORWOW
o CURAND_RNG_QUASI_DEFAULT
o CURAND_RNG_QUASI_SOBOL32

When rng_type is CURAND_RNG_PSEUDO_DEFAULT, the type chosen
is CURAND_RNG_PSEUDO_XORWOW.

When rng_type is CURAND_RNG_QUASI_DEFAULT, the type chosen is
CURAND_RNG_QUASI_SOBOL32.

The default values for rng_type = CURAND_RNG_PSEUDO_XORWOW
are:

o seed = 0
o offset = 0
o ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL32 are:

o dimensions = 1
o offset = 0
o ordering = CURAND_ORDERING_QUASI_DEFAULT

PG-05328-032_V01 NVIDIA 29

CUDA CURAND Library

Parameters:

generator - Pointer to generator
rng_type - Type of generator to create

Returns:

CURAND_STATUS_ALLOCATION_FAILED if memory could not be
allocated
CURAND_STATUS_INITIALIZATION_FAILED if there was a problem
setting up the GPU
CURAND_STATUS_VERSION_MISMATCH if the header file version
does not match the dynamically linked library version
CURAND_STATUS_TYPE_ERROR if the value for rng_type is invalid
CURAND_STATUS_SUCCESS if generator was created successfully

2.1.3.3 curandStatus_t curandDestroyGenerator (curandGenerator_t
generator)

Destroy an existing generator and free all memory associated with its state.

Parameters:

generator - Generator to destroy

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never cre-
ated
CURAND_STATUS_SUCCESS if generator was destroyed successfully

2.1.3.4 curandStatus_t curandGenerate (curandGenerator_t
generator, unsigned int ∗ outputPtr, size_t num)

Use generator to generate num 32-bit results into the device memory at
outputPtr. The device memory must have been previously allocated and

PG-05328-032_V01 NVIDIA 30

CUDA CURAND Library

be large enough to hold all the results. Launches are done with the stream
set using curandSetStream(), or the null stream if no stream has been set.

Results are 32-bit values with every bit random.

Parameters:

generator - Generator to use
outputPtr - Pointer to device memory to store CUDA-generated results,

or Pointer to host memory to store CPU-generated resluts
num - Number of random 32-bit values to generate

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never cre-
ated
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing
error from a previous kernel launch
CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of out-
put samples is not a multiple of the quasirandom dimension
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for
any reason
CURAND_STATUS_SUCCESS if the results were generated successfully

2.1.3.5 curandStatus_t curandGenerateNormal (curandGenerator_t
generator, float ∗ outputPtr, size_t n, float mean,
float stddev)

Use generator to generate num float results into the device memory at
outputPtr. The device memory must have been previously allocated and
be large enough to hold all the results. Launches are done with the stream
set using curandSetStream(), or the null stream if no stream has been set.

Results are 32-bit floating point values with mean mean and standard devia-
tion stddev.

Normally distributed results are generated from pseudorandom generators
with a Box-Muller transform, and so require num to be even. Quasirandom

PG-05328-032_V01 NVIDIA 31

CUDA CURAND Library

generators use an inverse cumulative distribution function to preserve di-
mensionality.

There may be slight numerical differences between results generated on the
GPU with generators created with curandCreateGenerator() and results
calculated on the CPU with generators created with curandCreateGenera-
torHost(). These differences arise because of differences in results for tran-
scendental functions. In addition, future versions of CURAND may use
newer versions of the CUDA math library, so different versions of CURAND
may give slightly different numerical values.

Parameters:

generator - Generator to use
outputPtr - Pointer to device memory to store CUDA-generated results,

or Pointer to host memory to store CPU-generated resluts
num - Number of floats to generate
mean - Mean of normal distribution
stddev - Standard deviation of normal distribution

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never cre-
ated
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing
error from a previous kernel launch
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for
any reason
CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of out-
put samples is not a multiple of the quasirandom dimension, or is not a
multiple of two for pseudorandom generators
CURAND_STATUS_SUCCESS if the results were generated successfully

2.1.3.6 curandStatus_t curandGenerateNormalDouble
(curandGenerator_t generator, double ∗ outputPtr, size_t
n, double mean, double stddev)

PG-05328-032_V01 NVIDIA 32

CUDA CURAND Library

Use generator to generate num double results into the device memory at
outputPtr. The device memory must have been previously allocated and
be large enough to hold all the results. Launches are done with the stream
set using curandSetStream(), or the null stream if no stream has been set.

Results are 64-bit floating point values with mean mean and standard devia-
tion stddev.

Normally distributed results are generated from pseudorandom generators
with a Box-Muller transform, and so require num to be even. Quasirandom
generators use an inverse cumulative distribution function to preserve di-
mensionality.

There may be slight numerical differences between results generated on the
GPU with generators created with curandCreateGenerator() and results
calculated on the CPU with generators created with curandCreateGenera-
torHost(). These differences arise because of differences in results for tran-
scendental functions. In addition, future versions of CURAND may use
newer versions of the CUDA math library, so different versions of CURAND
may give slightly different numerical values.

Parameters:

generator - Generator to use
outputPtr - Pointer to device memory to store CUDA-generated results,

or Pointer to host memory to store CPU-generated resluts
num - Number of doubles to generate
mean - Mean of normal distribution
stddev - Standard deviation of normal distribution

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never cre-
ated
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing
error from a previous kernel launch
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for
any reason

PG-05328-032_V01 NVIDIA 33

CUDA CURAND Library

CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of out-
put samples is not a multiple of the quasirandom dimension, or is not a
multiple of two for pseudorandom generators
CURAND_STATUS_ARCH_MISMATCH if the GPU does not support
double precision
CURAND_STATUS_SUCCESS if the results were generated successfully

2.1.3.7 curandStatus_t curandGenerateSeeds (curandGenerator_t
generator)

Generate the starting state of the generator. This function is automatically
called by generation functions such as curandGenerate() and curandGener-
ateUniform(). It can be called manually for performance testing reasons to
separate timings for starting state generation and random number genera-
tion.

Parameters:

generator - Generator to update

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never cre-
ated
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing
error from a previous kernel launch
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for
any reason
CURAND_STATUS_SUCCESS if the seeds were generated successfully

2.1.3.8 curandStatus_t curandGenerateUniform (curandGenerator_t
generator, float ∗ outputPtr, size_t num)

Use generator to generate num float results into the device memory at
outputPtr. The device memory must have been previously allocated and

PG-05328-032_V01 NVIDIA 34

CUDA CURAND Library

be large enough to hold all the results. Launches are done with the stream
set using curandSetStream(), or the null stream if no stream has been set.

Results are 32-bit floating point values between 0.0f and 1.0f, excluding
0.0f and including 1.0f.

Parameters:

generator - Generator to use
outputPtr - Pointer to device memory to store CUDA-generated results,

or Pointer to host memory to store CPU-generated resluts
num - Number of floats to generate

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never cre-
ated
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing
error from a previous kernel launch
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for
any reason
CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of out-
put samples is not a multiple of the quasirandom dimension
CURAND_STATUS_SUCCESS if the results were generated successfully

2.1.3.9 curandStatus_t curandGenerateUniformDouble
(curandGenerator_t generator, double ∗ outputPtr, size_t
num)

Use generator to generate num double results into the device memory at
outputPtr. The device memory must have been previously allocated and
be large enough to hold all the results. Launches are done with the stream
set using curandSetStream(), or the null stream if no stream has been set.

Results are 64-bit double precision floating point values between 0.0 and
1.0, excluding 0.0 and including 1.0.

PG-05328-032_V01 NVIDIA 35

CUDA CURAND Library

Parameters:

generator - Generator to use
outputPtr - Pointer to device memory to store CUDA-generated results,

or Pointer to host memory to store CPU-generated resluts
num - Number of doubles to generate

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never cre-
ated
CURAND_STATUS_PREEXISTING_FAILURE if there was an existing
error from a previous kernel launch
CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for
any reason
CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of out-
put samples is not a multiple of the quasirandom dimension
CURAND_STATUS_ARCH_MISMATCH if the GPU does not support
double precision
CURAND_STATUS_SUCCESS if the results were generated successfully

2.1.3.10 curandStatus_t curandGetDirectionVectors32
(curandDirectionVectors32_t ∗ vectors[],
curandDirectionVectorSet_t set)

Get a pointer to an array of direction vectors that can be used for quasiran-
dom number generation. The resulting pointer will reference an array of
direction vectors in host memory.

The array contains vectors for many dimensions. Each dimension has 32
vectors. Each individual vector is an unsigned int.

Legal values for set are:

o CURAND_DIRECTION_VECTORS_32_JOEKUO6 (20,000 dimensions)

Parameters:

vectors - Address of pointer in which to return direction vectors

PG-05328-032_V01 NVIDIA 36

CUDA CURAND Library

set - Which set of direction vectors to use

Returns:

CURAND_STATUS_OUT_OF_RANGE if the choice of set is invalid
CURAND_STATUS_SUCCESS if the pointer was set successfully

2.1.3.11 curandStatus_t curandGetVersion (int ∗ version)

Return in ∗version the version number of the dynamically linked CU-
RAND library. The format is the same as CUDART_VERSION from the
CUDA Runtime. The only supported configuration is CURAND version
equal to CUDA Runtime version.

Parameters:

version - CURAND library version

Returns:

CURAND_STATUS_SUCCESS if the version number was successfully
returned

2.1.3.12 curandStatus_t curandSetGeneratorOffset
(curandGenerator_t generator, unsigned long long offset)

Set the absolute offset of the pseudo or quasirandom number generator.

All values of offset are valid. The offset position is absolute, not relative to
the current position in the sequence.

Parameters:

generator - Generator to modify
offset - Absolute offset position

PG-05328-032_V01 NVIDIA 37

CUDA CURAND Library

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never cre-
ated
CURAND_STATUS_SUCCESS if generator offset was set successfully

2.1.3.13 curandStatus_t curandSetGeneratorOrdering
(curandGenerator_t generator, curandOrdering_t order)

Set the ordering of results of the pseudo or quasirandom number generator.

Legal values of order for pseudorandom generators are:

o CURAND_ORDERING_PSEUDO_BEST
o CURAND_ORDERING_PSEUDO_DEFAULT

Legal values of order for quasirandom generators are:

o CURAND_ORDERING_QUASI_DEFAULT

Parameters:

generator - Generator to modify
order - Ordering of results

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never cre-
ated
CURAND_STATUS_OUT_OF_RANGE if the ordering is not valid
CURAND_STATUS_SUCCESS if generator ordering was set successfully

2.1.3.14 curandStatus_t curandSetPseudoRandomGeneratorSeed
(curandGenerator_t generator, unsigned long long seed)

Set the seed value of the pseudorandom number generator. All values of
seed are valid. Different seeds will produce different sequences. Different
seeds will often not be statistically correlated with each other, but some

PG-05328-032_V01 NVIDIA 38

CUDA CURAND Library

pairs of seed values may generate sequences which are statistically corre-
lated.

Parameters:

generator - Generator to modify
seed - Seed value

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never cre-
ated
CURAND_STATUS_TYPE_ERROR if the generator is not a pseudoran-
dom number generator
CURAND_STATUS_SUCCESS if generator seed was set successfully

2.1.3.15 curandStatus_t curandSetQuasiRandomGeneratorDimensions
(curandGenerator_t generator, unsigned int num_dimensions)

Set the number of dimensions to be generated by the quasirandom number
generator.

Legal values for num_dimensions are 1 to 20000.

Parameters:

generator - Generator to modify
num_dimensions - Number of dimensions

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never cre-
ated
CURAND_STATUS_OUT_OF_RANGE if num_dimensions is not valid
CURAND_STATUS_TYPE_ERROR if the generator is not a quasiran-
dom number generator
CURAND_STATUS_SUCCESS if generator ordering was set successfully

PG-05328-032_V01 NVIDIA 39

CUDA CURAND Library

2.1.3.16 curandStatus_t curandSetStream (curandGenerator_t
generator, cudaStream_t stream)

Set the current stream for CURAND kernel launches. All library functions
will use this stream until set again.

Parameters:

generator - Generator to modify
stream - Stream to use or NULL for null stream

Returns:

CURAND_STATUS_NOT_INITIALIZED if the generator was never cre-
ated
CURAND_STATUS_SUCCESS if stream was set successfully

2.2 Device API

Typedefs

o typedef struct curandStateXORWOW curandState_t
o typedef struct curandStateSobol32 curandStateSobol32_t
o typedef struct curandStateXORWOW curandStateXORWOW_t

Functions

o __device__ unsigned int curand (curandStateSobol32_t ∗state)
Return 32-bits of quasirandomness from a Sobol32 generator.

o __device__ unsigned int curand (curandStateXORWOW_t ∗state)
Return 32-bits of pseudorandomness from an XORWOW generator.

o __device__ void curand_init (curandDirectionVectors32_t direc-
tion_vectors, unsigned int offset, curandStateSobol32_t ∗state)

Initialize Sobol32 state.

PG-05328-032_V01 NVIDIA 40

CUDA CURAND Library

o __device__ void curand_init (unsigned long long seed, unsigned long
long subsequence, unsigned long long offset, curandStateXORWOW_t
∗state)

Initialize XORWOW state.

o __device__ float curand_normal (curandStateSobol32_t ∗state)
Return a normally distributed float from an Sobol32 generator.

o __device__ float curand_normal (curandStateXORWOW_t ∗state)
Return a normally distributed float from an XORWOW generator.

o __device__ float2 curand_normal2 (curandStateXORWOW_t ∗state)
Return two normally distributed floats from an XORWOW generator.

o __device__ double2 curand_normal2_double (curandStateXORWOW_t
∗state)

Return two normally distributed doubles from an XORWOW generator.

o __device__ double curand_normal_double (curandStateSobol32_t
∗state)

Return a normally distributed double from an Sobol32 generator.

o __device__ double curand_normal_double (curandStateXORWOW_t
∗state)

Return a normally distributed double from an XORWOW generator.

o __device__ float curand_uniform (curandStateSobol32_t ∗state)
Return a uniformly distributed float from a Sobol32 generator.

o __device__ float curand_uniform (curandStateXORWOW_t ∗state)
Return a uniformly distributed float from an XORWOW generator.

o __device__ double curand_uniform_double (curandStateSobol32_t
∗state)

Return a uniformly distributed double from a Sobol32 generator.

o __device__ double curand_uniform_double (curandStateXORWOW_t
∗state)

Return a uniformly distributed double from an XORWOW generator.

PG-05328-032_V01 NVIDIA 41

CUDA CURAND Library

o __device__ void skipahead (unsigned int n, curandStateSobol32_t
∗state)

Update Sobol32 state to skip n elements.

o __device__ void skipahead (unsigned long long n, curandStateXOR-
WOW_t ∗state)

Update XORWOW state to skip n elements.

o __device__ void skipahead_sequence (unsigned long long n, curand-
StateXORWOW_t ∗state)

Update XORWOW state to skip ahead n subsequences.

2.2.1 Typedef Documentation

2.2.1.1 typedef struct curandStateXORWOW curandState_t

Default RNG

2.2.1.2 typedef struct curandStateSobol32 curandStateSobol32_t

CURAND Sobol32 state

2.2.1.3 typedef struct curandStateXORWOW
curandStateXORWOW_t

CURAND XORWOW state

2.2.2 Function Documentation

2.2.2.1 __device__ unsigned int curand (curandStateSobol32_t ∗
state)

Return 32-bits of quasirandomness from the Sobol32 generator in state,
increment position of generator by one.

PG-05328-032_V01 NVIDIA 42

CUDA CURAND Library

Parameters:

state - Pointer to state to update

Returns:

32-bits of quasirandomness as an unsigned int, all bits valid to use.

2.2.2.2 __device__ unsigned int curand (curandStateXORWOW_t
∗ state)

Return 32-bits of pseudorandomness from the XORWOW generator in
state, increment position of generator by one.

Parameters:

state - Pointer to state to update

Returns:

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

2.2.2.3 __device__ void curand_init (curandDirectionVectors32_t
direction_vectors, unsigned int offset,
curandStateSobol32_t ∗ state)

Initialize Sobol32 state in state with the given direction vectors and
offset.

The direction vector is a device pointer to an array of 32 unsigned ints. All
input values of offset are legal.

Parameters:

direction vectors - Pointer to array of 32 unsigned ints representing the
direction vectors for the desired dimension

offset - Absolute offset into sequence
state - Pointer to state to initialize

PG-05328-032_V01 NVIDIA 43

CUDA CURAND Library

2.2.2.4 __device__ void curand_init (unsigned long long
seed, unsigned long long subsequence, unsigned long
long offset, curandStateXORWOW_t ∗ state)

Initialize XORWOW state in state with the given seed, subsequence,
and offset.

All input values of seed, subsequence, and offset are legal. Large val-
ues for subsequence and offset require more computation and so will
take more time to complete.

A value of 0 for seed sets the state to the values of the original published
version of the xorwow algorithm.

Parameters:

seed - Arbitrary bits to use as a seed
subsequence - Subsequence to start at
offset - Absolute offset into sequence
state - Pointer to state to initialize

2.2.2.5 __device__ float curand_normal (curandStateSobol32_t ∗
state)

Return a single normally distributed float with mean 0.0f and standard
deviation 1.0f from the Sobol32 generator in state, increment position of
generator by one.

The implementation uses the inverse cumulative distribution function to
generate normally distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed float with mean 0.0f and standard deviation
1.0f

PG-05328-032_V01 NVIDIA 44

CUDA CURAND Library

2.2.2.6 __device__ float curand_normal (curandStateXORWOW_t
∗ state)

Return a single normally distributed float with mean 0.0f and standard
deviation 1.0f from the XORWOW generator in state, increment position
of generator by one.

The implementation uses a Box-Muller transform to generate two normally
distributed results, then returns them one at a time. See curand_normal2()
for a more efficient version that returns both results at once.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed float with mean 0.0f and standard deviation
1.0f

2.2.2.7 __device__ float2 curand_normal2
(curandStateXORWOW_t ∗ state)

Return two normally distributed floats with mean 0.0f and standard devi-
ation 1.0f from the XORWOW generator in state, increment position of
generator by two.

The implementation uses a Box-Muller transform to generate two normally
distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed float2 where each element is from a distribution
with mean 0.0f and standard deviation 1.0f

PG-05328-032_V01 NVIDIA 45

CUDA CURAND Library

2.2.2.8 __device__ double2 curand_normal2_double
(curandStateXORWOW_t ∗ state)

Return two normally distributed doubles with mean 0.0 and standard de-
viation 1.0 from the XORWOW generator in state, increment position of
generator.

The implementation uses a Box-Muller transform to generate two normally
distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed double2 where each element is from a distribution
with mean 0.0 and standard deviation 1.0

2.2.2.9 __device__ double curand_normal_double
(curandStateSobol32_t ∗ state)

Return a single normally distributed double with mean 0.0 and standard
deviation 1.0 from the Sobol32 generator in state, increment position of
generator by one.

The implementation uses the inverse cumulative distribution function to
generate normally distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation
1.0

PG-05328-032_V01 NVIDIA 46

CUDA CURAND Library

2.2.2.10 __device__ double curand_normal_double
(curandStateXORWOW_t ∗ state)

Return a single normally distributed double with mean 0.0 and standard
deviation 1.0 from the XORWOW generator in state, increment position
of generator.

The implementation uses a Box-Muller transform to generate two nor-
mally distributed results, then returns them one at a time. See cu-
rand_normal2_double() for a more efficient version that returns both results
at once.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation
1.0

2.2.2.11 __device__ float curand_uniform (curandStateSobol32_t
∗ state)

Return a uniformly distributed float between 0.0f and 1.0f from the
Sobol32 generator in state, increment position of generator. Output range
excludes 0.0f but includes 1.0f. Denormalized floating point outputs are
never returned.

The implementation is guaranteed to use a single call to curand().

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed float between 0.0f and 1.0f

PG-05328-032_V01 NVIDIA 47

CUDA CURAND Library

2.2.2.12 __device__ float curand_uniform
(curandStateXORWOW_t ∗ state)

Return a uniformly distributed float between 0.0f and 1.0f from the
XORWOW generator in state, increment position of generator. Output
range excludes 0.0f but includes 1.0f. Denormalized floating point out-
puts are never returned.

The implementation may use any number of calls to curand() to get
enough random bits to create the return value. The current implementation
uses one call.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed float between 0.0f and 1.0f

2.2.2.13 __device__ double curand_uniform_double
(curandStateSobol32_t ∗ state)

Return a uniformly distributed double between 0.0 and 1.0 from the
Sobol32 generator in state, increment position of generator. Output range
excludes 0.0 but includes 1.0. Denormalized floating point outputs are
never returned.

The implementation is guaranteed to use a single call to curand() to pre-
serve the quasirandom properties of the sequence.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0 and 1.0

PG-05328-032_V01 NVIDIA 48

CUDA CURAND Library

2.2.2.14 __device__ double curand_uniform_double
(curandStateXORWOW_t ∗ state)

Return a uniformly distributed double between 0.0 and 1.0 from the XOR-
WOW generator in state, increment position of generator. Output range
excludes 0.0 but includes 1.0. Denormalized floating point outputs are
never returned.

The implementation may use any number of calls to curand() to get
enough random bits to create the return value. The current implementation
uses exactly two calls.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0 and 1.0

2.2.2.15 __device__ void skipahead (unsigned int n,
curandStateSobol32_t ∗ state)

Update the Sobol32 state in state to skip ahead n elements.

All values of n are valid.

Parameters:

n - Number of elements to skip
state - Pointer to state to update

2.2.2.16 __device__ void skipahead (unsigned long long n,
curandStateXORWOW_t ∗ state)

Update the XORWOW state in state to skip ahead n elements.

All values of n are valid. Large values require more computation and so will
take more time to complete.

PG-05328-032_V01 NVIDIA 49

CUDA CURAND Library

Parameters:

n - Number of elements to skip
state - Pointer to state to update

2.2.2.17 __device__ void skipahead_sequence (unsigned long
long n, curandStateXORWOW_t ∗ state)

Update the XORWOW state in state to skip ahead n subsequences. Each
subsequence is 267 elements long, so this means the function will skip ahead
267 · n elements.

All values of n are valid. Large values require more computation and so will
take more time to complete.

Parameters:

n - Number of subsequences to skip
state - Pointer to state to update

PG-05328-032_V01 NVIDIA 50

	CURAND Library
	Compatibility and Versioning
	Host API Overview
	Generator Types
	Generator Options
	Seed
	Offset
	Order

	Return Values
	Generation Functions
	Host API Example

	Device API Overview
	Pseudorandom Sequences
	Bit Generation
	Distributions

	Quasirandom Sequences
	Skip-Ahead
	Performance Notes
	Device API Example

	References

	CURAND Reference
	Host API
	Typedef Documentation
	curandDirectionVectors32_t
	curandDirectionVectorSet_t
	curandGenerator_t
	curandOrdering_t
	curandRngType_t
	curandStatus_t

	Enumeration Type Documentation
	curandDirectionVectorSet
	curandOrdering
	curandRngType
	curandStatus

	Function Documentation
	curandCreateGenerator
	curandCreateGeneratorHost
	curandDestroyGenerator
	curandGenerate
	curandGenerateNormal
	curandGenerateNormalDouble
	curandGenerateSeeds
	curandGenerateUniform
	curandGenerateUniformDouble
	curandGetDirectionVectors32
	curandGetVersion
	curandSetGeneratorOffset
	curandSetGeneratorOrdering
	curandSetPseudoRandomGeneratorSeed
	curandSetQuasiRandomGeneratorDimensions
	curandSetStream

	Device API
	Typedef Documentation
	curandState_t
	curandStateSobol32_t
	curandStateXORWOW_t

	Function Documentation
	curand
	curand
	curand_init
	curand_init
	curand_normal
	curand_normal
	curand_normal2
	curand_normal2_double
	curand_normal_double
	curand_normal_double
	curand_uniform
	curand_uniform
	curand_uniform_double
	curand_uniform_double
	skipahead
	skipahead
	skipahead_sequence

