

Version 1.3

8/17/2010

NVIDIA CUDA™

Fermi™ Compatibility Guide
for CUDA Applications

Fermi Compatibility Guide for CUDA Applications ii

Table of Contents

Software Requirements ... 1

What Is This Document? .. 1

1.1 Application Compatibility on Fermi ... 1

1.2 Verifying Fermi Compatibility for Existing Applications ... 2

1.2.1 Check that Fermi-compatible device code is compiled in to the application. 2

1.2.1.1 My application uses the CUDA Toolkit 2.1, 2.2, or 2.3. 2

1.2.1.2 My application uses the CUDA Toolkit 3.0 or later. ... 2

1.2.2 Check that kernels that communicate among threads in a warp use volatile. 2

1.3 Building Applications with Fermi Support .. 3

1.3.1 My application is a CUDA Runtime API application. ... 3

1.3.2 My application is a CUDA Driver API application. .. 5

Appendix A. Revision History ... 7

Version 1.0 ... 7

Version 1.1 ... 7

Version 1.3 ... 7

1 Fermi Compatibility Guide for CUDA Applications

Software Requirements

 What Is This Document?

This Fermi Compatibility Guide for CUDA Applications is an application note to help
developers ensure that their CUDA applications will run on GPUs based on the
Fermi Architecture. This guide is intended to provide guidance to developers who
are already familiar with programming in CUDA C/C++ and want to ensure their
software applications are compatible with Fermi.

IMPORTANT NOTE:

Prior to the introduction of the Fermi architecture, all NVIDIA Tesla®-branded
products were based on the Tesla architecture. For the purposes of this document,
the term “Tesla” refers only to the GPU architecture and not to any particular
NVIDIA product. Hereinafter, Tesla refers to devices of compute capability 1.x,
and Fermi refers to devices of compute capability 2.0.

1.1 Application Compatibility on Fermi

The NVIDIA CUDA C compiler, nvcc, can be used to generate both architecture-
specific CUBIN files and forward-compatible PTX versions of each kernel.

Applications that already include PTX versions of their kernels should work as-is on
Fermi-based GPUs. Applications that only support specific GPU architectures via
CUBIN files, however, will either need to provide a PTX version of their kernels
that can be just-in-time (JIT) compiled for Fermi and future GPUs or to be updated
to include Fermi-specific CUBIN versions of their kernels. For this reason, to
ensure forward compatibility with CUDA architectures introduced after the
application has been released, it is recommended that all applications support
launching PTX versions of their kernels.

Each CUBIN file targets a specific compute capability version and is forward-
compatible only with CUDA architectures of the same major version number; e.g.,
CUBIN files that target compute capability 1.0 are supported on all compute-
capability 1.x (Tesla) devices but are not supported on compute-capability 2.0
(Fermi) devices.

Fermi Compatibility Guide for CUDA Applications 2

1.2 Verifying Fermi Compatibility for Existing
Applications

1.2.1 Check that Fermi-compatible device code is
compiled in to the application.

1.2.1.1 My application uses the CUDA Toolkit 2.1, 2.2, or 2.3.

CUDA applications built using the CUDA Toolkit versions 2.1 through 2.3 are
compatible with Fermi as long as they are built to include PTX versions of their
kernels. NVIDIA driver versions 195.xx or newer allow the application to use the
PTX JIT code path. To test that PTX JIT is working for your application, you can
do the following:

 Download and install the latest driver from http://www.nvidia.com/drivers
(use version 195.xx or later).

 Set the system environment variable CUDA_FORCE_PTX_JIT=1

 Launch your application.

When starting a CUDA application for the first time with the above environment
flag, the CUDA driver will JIT compile the PTX for each CUDA kernel that is used
into native CUBIN code. The generated CUBIN for the target GPU architecture is
cached by the CUDA driver. This cache persists across system shutdown/restart
events.

1.2.1.2 My application uses the CUDA Toolkit 3.0 or later.

CUDA applications built using the CUDA Toolkit version 3.0 or later are
compatible with Fermi as long as they are built to include kernels in either Fermi-
native CUBIN format (see Section 1.3) or PTX format (see Section 1.2.1.1) or both.

1.2.2 Check that kernels that communicate among

threads in a warp use volatile.

When threads within a warp need to communicate values with each other via shared
or global memory, a common optimization is to omit __syncthreads() after
writing these values to memory (see Sections 5.4.3 and B.2.5 of the CUDA C
Programming Guide). In these cases, __syncthreads() can be omitted because of
the synchronicity of execution of the threads in a warp.

A common application of this optimization is in parallel reduction, which is a
common data-parallel operation covering a set of problems in which each output
depends on all inputs (e.g., finding the sum of a large group of numbers, counting
the instances of value n among a large set of values, etc.). Such applications often
employ code similar to the example at the end of this section (which is a simplified
excerpt from the reduction sample from the GPU Computing SDK).

http://www.nvidia.com/drivers

3 Fermi Compatibility Guide for CUDA Applications

If your kernels implement this sort of optimization when passing values among
threads in a warp using shared or global memory, it is essential that the pointer into
that memory is declared with the volatile qualifier (shown in red below) to force
the compiler to write the intermediate values out to memory after each step rather
than holding the values (smem[tid] in the example below) in registers.

Code such as this that omits the volatile qualifier will not work correctly on
Fermi due to enhanced compiler optimizations. In the example below, the volatile
qualifier tells the compiler that it must store smem[tid] back to shared memory
after every assignment rather than simply allocating a register and optimizing away
the stores to shared memory.

__device__ void reduce(float *g_idata, float *g_odata)

{

 unsigned int tid = threadIdx.x;

 extern __shared__ float sdata[];

 sdata[tid] = g_idata[...]; // assign initial value

 __syncthreads();

 // do reduction in shared mem. this example assumes

 // that the block size is 256; see the “reduction”

 // sample in the GPU Computing SDK for a complete and

 // general implementation

 if (tid < 128) {sdata[tid]+=sdata[tid+128];} __syncthreads();

 if (tid < 64) {sdata[tid]+=sdata[tid+ 64];} __syncthreads();

 if (tid < 32) {

 // no __syncthreads() necessary after each of the

 // following lines as long as we access the data via

 // a pointer declared as volatile because the 32 threads

 // in each warp execute in lock-step with each other

 volatile float *smem = sdata;

 smem[tid] += smem[tid + 32];

 smem[tid] += smem[tid + 16];

 smem[tid] += smem[tid + 8];

 smem[tid] += smem[tid + 4];

 smem[tid] += smem[tid + 2];

 smem[tid] += smem[tid + 1];

 }

 // write result for this block to global mem

 if (tid == 0)

 g_odata[blockIdx.x] = sdata[0];

}

1.3 Building Applications with Fermi Support

1.3.1 My application is a CUDA Runtime API application.

The compilers included in the CUDA Toolkit 2.1, 2.2, and 2.3 generate CUBIN files
native to the Tesla architecture but cannot generate CUBIN files native to the Fermi
architecture (this requires CUDA Toolkit 3.0 or later). To allow support for Fermi
and future architectures when using the 2.x versions of the CUDA Toolkit, the
compiler can generate a PTX version of each kernel. By default, the PTX version is

Fermi Compatibility Guide for CUDA Applications 4

included in the executable and is available to be run on Fermi devices via just-in-
time (JIT) compilation.

Beginning with version 3.0 of the CUDA Toolkit, nvcc can generate CUBIN files
native to the Fermi architecture as well. When using the CUDA Toolkit 3.0 or later,
to ensure that nvcc will generate CUBIN files for all released GPU architectures as
well as a PTX version for future GPU architectures, specify the appropriate
“-arch=sm_xx” parameter on the nvcc command line as shown below.

When a CUDA application launches a kernel, the CUDA Runtime library
(CUDART) determines the compute capability of each GPU in the system and uses
this information to find the best matching CUBIN or PTX version of the kernel. If
a CUBIN file supporting the architecture of the GPU on which the application is
launching the kernel is available, it is used; otherwise, the CUDA Runtime will load
the PTX and JIT compile the PTX to the CUBIN format before launching it on the
GPU.

Below are the compiler settings to build cuda_kernel.cu to run on Tesla devices
natively and Fermi devices via PTX. The main advantage of providing the native
code is to save the end user the time it takes to PTX JIT a CUDA kernel that has
been compiled to PTX. However, since the CUDA driver will cache the native ISA
generated as a result of the PTX JIT, this is mostly a one-time cost. There will still
be some additional per-invocation overhead, as the CUDA Runtime will need to
check the architecture of the current GPU and explicitly call the best-available
version of the CUDA kernel.

Windows:

nvcc.exe -ccbin "C:\vs2008\VC\bin" -I"C:\CUDA\include"

-Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"

–arch=sm_10

--compile -o "Release\cuda_kernel.cu.obj" "cuda_kernel.cu"

Mac/Linux:

/usr/local/cuda/bin/nvcc

-arch=sm_10

--compiler-options -fno-strict-aliasing -I.

-I/usr/local/cuda/include -DUNIX -O2

-o release/cuda_kernel.cu.o -c cuda_kernel.cu

Note: the nvcc command-line option “-arch=sm_xx” is a shorthand equivalent
to the following more explicit –gencode command-line options.

–gencode=arch=compute_xx,code=sm_xx

–gencode=arch=compute_xx,code=compute_xx

The –gencode options must be used instead of –arch if you want to compile
CUBIN or PTX code for multiple target architectures, as shown below.

Alternatively, with version 3.0 of the CUDA Toolkit, the compiler can build
cuda_kernel.cu to run on both Tesla devices and Fermi devices natively as shown
below. This example also builds in forward-compatible PTX code.

5 Fermi Compatibility Guide for CUDA Applications

Windows:

nvcc.exe -ccbin "C:\vs2008\VC\bin" -I"C:\CUDA\include"

-Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"

-gencode=arch=compute_10,code=sm_10

-gencode=arch=compute_10,code=compute_10

-gencode=arch=compute_20,code=sm_20

-gencode=arch=compute_20,code=compute_20

--compile -o "Release\cuda_kernel.cu.obj" "cuda_kernel.cu"

Mac/Linux:

/usr/local/cuda/bin/nvcc

-gencode=arch=compute_10,code=sm_10

-gencode=arch=compute_10,code=compute_10

-gencode=arch=compute_20,code=sm_20

-gencode=arch=compute_20,code=compute_20

--compiler-options -fno-strict-aliasing -I.

-I/usr/local/cuda/include -DUNIX -O2

-o release/cuda_kernel.cu.o -c cuda_kernel.cu

Note the distinction in these command lines between the “code=sm_10”
argument to -gencode, which generates CUBIN files for the specified compute
capability, and the “code=compute_10” argument, which generates PTX for
that compute capability.

1.3.2 My application is a CUDA Driver API application.

What steps do I need to take to support Fermi?

Answer: You have several options:

 Compile CUDA kernel files to PTX. While CUBIN files can be generated
using the compilers in the CUDA Toolkit 2.1 through 2.3, those CUBIN files
are compatible only with Tesla devices, not Fermi devices.

Refer to the following GPU Computing SDK code samples for examples
showing how to use the CUDA Driver API to launch PTX kernels:

 matrixMulDrv

 simpleTextureDrv

 ptxjit

Use the the compiler settings below to create PTX output files from your
CUDA source files:

Windows:

nvcc.exe -ccbin "C:\vs2008\VC\bin" -I"C:\CUDA\include"

-Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"

-ptx

–o "cuda_kernel.ptx" "cuda_kernel.cu"

Mac/Linux:

/usr/local/cuda/bin/nvcc

-ptx

--compiler-options -fno-strict-aliasing -I.

-I/usr/local/cuda/include -DUNIX -O2

-o cuda_kernel.ptx cuda_kernel.cu

Fermi Compatibility Guide for CUDA Applications 6

 Compile your CUDA kernels to both CUBIN and PTX output files. This must
be specified explicitly at compile time, since nvcc must be called once for each
generated output file of either type.

At runtime, your application will need to explicitly check the compute capability
of the current GPU with the following CUDA Driver API function. Refer to
the deviceQueryDrv code sample in the GPU Computing SDK for a detailed
example of how to use this function.

cuDeviceComputeCapability(&major, &minor, dev)

Based on the major and minor version returned by this function, your
application can choose the appropriate CUBIN or PTX version of each kernel.

To load kernels that were compiled to PTX using the CUDA Driver API, you
can use code as in the following example. Calling cuModuleLoadDataEx will
JIT compile your PTX source files. (Note that there are a few JIT options that
developers need to be aware of to properly compile their kernels.) The GPU
Computing SDK samples matrixMulDrv and simpleTextureDrv further
illustrate this process.

CUmodule cuModule;

CUfunction cuFunction = 0;

string ptx_source;

// Helper function load PTX source to a string

findModulePath ("matrixMul_kernel.ptx",

 module_path, argv, ptx_source));

// We specify PTXJIT compilation with parameters

const unsigned int jitNumOptions = 3;

CUjit_option *jitOptions = new CUjit_option[jitNumOptions];

void **jitOptVals = new void*[jitNumOptions];

// set up size of compilation log buffer

jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;

int jitLogBufferSize = 1024;

jitOptVals[0] = (void *)jitLogBufferSize;

// set up pointer to the compilation log buffer

jitOptions[1] = CU_JIT_INFO_LOG_BUFFER;

char *jitLogBuffer = new char[jitLogBufferSize];

jitOptVals[1] = jitLogBuffer;

// set up pointer for Maximum # of registers

jitOptions[2] = CU_JIT_MAX_REGISTERS;

int jitRegCount = 32;

jitOptVals[2] = (void *)jitRegCount;

// Loading a module will force a PTX to be JIT

status = cuModuleLoadDataEx(&cuModule, ptx_source.c_str(),

 jitNumOptions, jitOptions,

 (void **)jitOptVals);

printf("> PTX JIT log:\n%s\n", jitLogBuffer);

Fermi Compatibility Guide for CUDA Applications 7

Appendix A.
Revision History

 Version 1.0

 Initial public release.

 Version 1.1

 Corrected Section 1.2.1 to indicate that the CUDA_FORCE_PTX_JIT=1 test
can be used with CUDA Driver API applications as well as CUDA
Runtime API applications.

 Added Section 1.2.2 discussing the use of volatile for warp-synchronous
code omitting __syncthreads().

 Added Section Error! Reference source not found. discussing the passing
of CUdeviceptr arguments to kernels through the CUDA Driver API
when running device code compiled in 64-bit mode on Fermi.

 Minor clarifications in Section 1.3.1.

 Version 1.3

 Removed Section 1.2.3 discussing the passing of CUdeviceptr arguments
to kernels through the CUDA Driver API, since the Driver API is changing
in CUDA Toolkit 3.2 to be 64-bit-clean. CUdeviceptr type-casting of the
form (void*)(size_t) is no longer necessary.

 Clarified discussion of the use of volatile in Section 1.2.2.

 Updated cross-references to CUDA C Programming Guide version 3.2.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING
PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any patent
or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, GeForce, NVIDIA Quadro, and Tesla are trademarks or registered
trademarks of NVIDIA Corporation. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

© 2010 NVIDIA Corporation. All rights reserved.

	Fermi™ Compatibility Guide for CUDA Applications
	Software Requirements
	What Is This Document?
	Application Compatibility on Fermi
	Verifying Fermi Compatibility for Existing Applications
	Check that Fermi-compatible device code is compiled in to the application.
	My application uses the CUDA Toolkit 2.1, 2.2, or 2.3.
	My application uses the CUDA Toolkit 3.0 or later.

	Check that kernels that communicate among threads in a warp use volatile.

	Building Applications with Fermi Support
	My application is a CUDA Runtime API application.
	My application is a CUDA Driver API application.

	Revision History
	Version 1.0
	Version 1.1
	Version 1.3

