allinea

High performance tools to debug, profile, and analyze your applications

Enabling life-changing scientific discoveries
with Allinea's tools

allinea allinea allinea 2allinea

PERFORMANCE

FORGE DDT MAP REPORTS

Agenda for the day

08:30 - 09:00

09:00 - 10:20

10:20 — 10:40 :

10:40 — 13:00:

13:00 — 14:00:

14:00 — 15:00:

- Arrival and Welcome

: Adding vectorization to linear algebra applications

Coffee break
Preparing applications for large scale
Lunch Break

Commercial presentation

allinea

HPC Ultimate target

o © .'
®
o @ . o
COMPUTER @
e SIMULATIONS

PREDICTIVE

SCIENCE

allinea

Example: Weather and Forecasting models

Building blocks for Exascale

» Enable multi-physics simulations

SCaIab| | |ty * Run larger, more accurate models

* Resolve ground-breaking scientific problems

» Reduce wasted resources (energy...)

EﬁlClency - Maximize science output per $

* Minimize time to result

* Pro-actively and automatically detect faults

S | m pl |C|ty « Provide applications on various hardware

« Facilitate technical dialogue with scientists

allinea

Allinea’s vision

« Helping maximize HPC efficiency
« Reduce HPC systems operating costs
allinea °* Resolve cutting-edge challenges
PERFORMANCE

REPORTS « Promote Efficiency (as opposed to Utilization)
« Transfer knowledge to HPC communities

« Helping the HPC community design the best applications
~~% allinea * Reach highest levels of performance and scalability
T Em R[QE * Improve scientific code quality and accuracy

allinea

Where to find Allinea’s tools

‘ Over 65% of Top 100 HPC systems

\

* From small to very large tools provision

l 8 of the Top 10 HPC systems

* From 1,000 to 700,000 core tools usage

l Future leadership systems

 Millions of cores usage

allinea

“Learn” with All

MADbench2

16 processes, 1 node

sandybridge2

Mon Nov 4 12:27:50 2013
109 seconds (2 minutes)

allinea
PERFORMANCE

REPORTS

tmp/MADbench2

12-core server | HDD / 16 readers + writers MPI

CPU

Summary: MADbench2 is |/O-bound in this configuration

The total wallclock ime was spent as follows:

CPU 48% |

vel oo I
o s

Time spent running application code. High values are usually good.
This is low; it may be worth improving I/O performance first.

Time spent in MPI calls. High values are usually bad.

This is average; check the MPI breakdown for advice on reducing it.

Time spent in filesystem I/0. High values are usually bad_
This is high; check the VO breakdown section for optimization advice.

This application run was I/O-bound. A breakdown of this time and advice for investigating furtheris in the /O section below.

CPU

A breakdown of how the 4.6% total CPU time was spent:
Scalar numericops 49% |

Vector numericops 0.1% |

Memory accesses 95.0% [N

Other 0.0 |

The per-core performance is memory-bound. Use a profiler to
identify ime-consuming loops and check their cache performance.

No time was spent in vectorized instructions. Check the compiler's
vectorization advice lo see why key loops could not be vedorized.

110

A breakdown of how the 53.9% total IO time was spent:

Time in reads 3.7% |

Time in writes 96.3% [|

Estimated read rate 272 Mb/s [

Estimated write rate 7.06 Mbis |

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or

inefficient access pattemns. Use an /0 profiler to investigats which
write calls are affected.

MPI
Ofthe 41.3% total time spentin MPI calls:
Time in collective calls 100.0% |

Time in point-to-point calls 0.0% |

Estimated collective rate 4.07 bytes/s [I

Estimated point-to-point rate 0 bytesis I

All of the time is spent in collective calls with a very low transfer rate.
This suggests a significant load imbalance is causing

synchronization overhead. You can investigate this further with an
MPI profiler.

Memory

Per-process memory usage may also affect scaling:

Mean process memory usage 160 Mb [N

Peak process memory usage 173 Mb [N

Peak node memory usage 172% N

The peak node memory usage is low. You may be able to reduce

the total number of CPU hours used by running with fewer MP|
processes and more data on each process.

inea Performance Reports

Very simple start-up

No source code needed

Fully scalable, very low overhead

Rich set of metrics

allinea

Allinea Forge: a toolkit to save developers’ time

allinea

Allinea Forge: a toolkit to save developers’ time

» Unique single interface

ACCESSIBLE
» Easy to start and use

» State of the art features

POWERFUL
* Fully scalable

» Tackles new challenges
 For latest HPC systems

ININ[OAVZAN VA=

Fine tune
bottlenecks

Find
unexpected

issues

Resolve
bugs

allinea

We are here today for a single reason.
Help you save your time.

Bug
Resolution
Solver Code
tuning l validation
Bottleneck
- @

allinea

Convergent Science: developing faster software

« Challenges

Developing faster and more capable software to meet the
growing demands of Convergent Science clients for precision
and performance

 Huge speed up on CONVERGE: from 2h down to 4 sec
* Now possible to run jobs efficiently on hundreds of cores

* Now possible to scale up from 2 million to 20 million nodes

Full case study:

http://www.allinea.com/news/201509/convergent-science-
ignites-combustion-simulation-performance-allinea-forge

allinea

allinea

High performance tools to debug, profile, and analyze your applications

Questions?

Feel free to ask anything...!

A
allinea allinea allinea allin€a
FORGE DDT MAP REPORTS

allinea

High performance tools to debug, profile, and analyze your applications

Technical session

Adding vectorization to linear algebra applications

allinea allinea allinea 2allinea

PERFORMANCE

FORGE DDT MAP REPORTS

Agenda: Adding vectorization to an application

 What is vectorization?
« Why Is vectorization important?
 When can my code use vectorization?

 How to actually enable vectorization?

allinea

What Is vectorization?

Cores Ctrl
\
#1 #H2
Cache \\ #3 %‘ Vector || Scalar
\ Unit Unit
CPU
Cache

allinea

What Is vectorization?

Instruction: sqrt

Vector || Scalar
Unit Unit

Cache

CPU core

Intel Haswell: 256-bit vector unit =» 8 SP /4 DP
Intel Knights Landing: 512-bit vector unit =» 16 SP / 8 DP

allinea

Why Is vectorization important?

A

Performance

“Trapped” performance:
Haswell: 88% peak
KNL.: 94% peak

®—® \/ector and parallel
e—@ Parallel only

Vector only
®—® No vector or parallel

CPU generation

allinea

Question

Who is in charge of
vectorizing a code?

allinea

When can my code use vectorization?

« A compiler can vectorize a loop if:
 The loop is countable at runtime
 There is a single control flow within the loop

« The loop does not contain function calls

Consider the loop:

Is this enough? NoO! a= {0.1.23,4)
b=1{567280

for(i=1; i<N; i++)
alil] = a[i-1] + b[il;
« Data dependencies

Applying each operation sequentially:

. . a[l] =a[0] +b[1] — a[1]=0+6 — a[1]=6

Can Stop VeCt0r|Zat|On a[2] =a[1] +b[2] — a[?] = ,Bf?-"—:— a[2] =13
a[3] =a[2] +b[3] — a[3]=13+8 —_a[3] =21

a[4] = a[3] +b[4] — a[4]= 2159 — a[4] =30

a=10,6 13, 21,30}

When can my code use vectorization?

« A compiler can vectorize a loop if:
 The loop is countable at runtime

« There is a single control flow within the loop

° The IOOp Mow let's try vector operations: For(i=1; i<N; i++)

a= {01234} Lo - o
b=156.78.9) al[1] = al[1-1l] + b[1];
Applying vector operations, 1={1.2 3 4} F
- afi-1] ={0,1,2,3} (load) i=1; i<N; i++)
Is this enoug v -5759 (oa) i1 = a[i-1] + bIil;

101231 +167.89}=16.8 10, 12} (operate)
e Data deper ali] =16, 8, 10, 12} (store)

. . a[1l] =a[0] +b[1] — a[1]=0+6 —3- a[l]=6
Can Stop VeCt0r|Zat|On a[2] =a[1] +b[2] — a[2] = Bﬁﬁ- a[2] =13
a[3] =a[2] +b[3] — a[3]=13+8 — _a[3]=21
a[4] =a[3] +b[4] — a[d]= 21'*;—97-—-:5[4] =30

a=10,6 13, 21,30}

How to actually produce vectorized binaries?

« Step 1: adopt a “vector-aware” coding methodology
« Make sure the code can be vectorized (see above)
« Enable vectorization during compilation (e.g. —xhost, ...)
« Tell the compiler he can vectorize (#pragma ivdep)

« Use optimized mathematical libraries as much as possible

« Step 2: use tools to help you...

allinea

.T(2431):
.T(993):
.F(992):
.T(991):
.T(243):

mg.f(992):
mg.T(991)
mg.f(753):

. remark:
(col. 7) remark:
(col. 13) remark:
(col. 10) remark:
(col. 7) remark:
(col. 7) remark:

oop was not vectorized:
loop was not vectorized: not inner loop.
LOOP WAS VECTORIZED.
loop was not vectorized: not inner loop.
loop was not vectorized: not inner loop.
loop was not vectorized: existence of vector depende

(col. 13)
(col. 10)
(col. 7)
(col. 13)

LOOP WAS VECTORIZED.

loop was not vectorized:
loop was not vectorized:

loop was not vectorized:

remark:

remark:
remark:

remark:

not inner loop.
not inner loop.
vectorization possible but

seems inefficient.

mg.f(762):

(col. 13) remark: loop was not vectorized: vectorization possible but

seems inefficient.

mg.T(749):
mg.f(746):
mg.f(993):
mg.f(992):
mg.f(991)
mg.f(2255):
dence.
.T(2254):
.f(2251):
.T(2433):
.T(2433):
.T(2432):
.T(2431):
.T(2433):
.T(2433):
.T(2432):
.T(2431):
.T(527):

(col. 10) remark:
(col. 7) remark:

loop was not vectorized:
loop was not vectorized:
(col. 13) remark: LOOP WAS VECTORIZED.
(col. 10) remark: loop was not vectorized: not inner loop.
(col. 7) remark: loop was not vectorized: not inner loop.

(col. 16) remark: loop was not vectorized: existence of vector depen

not inner loop.
not inner loop.

not inner loop.
not inner loop.

(col. 13) remark:
(col. 7) remark:

(col. 13) remark:
(col. 13) remark:
(col. 10) remark:
(col. 7) remark:

(col. 13) remark:
(col. 13) remark:

loop was not vectorized:
loop was not vectorized:
LOOP WAS VECTORIZED.
loop was not vectorized:
loop was not vectorized:
loop was not vectorized:
LOOP WAS VECTORIZED.
loop was not vectorized: not inner loop.

(col. 10) remark: loop was not vectorized: not inner loop.

(col. 7) remark: loop was not vectorized: not inner loop.

(col. 7) remark: loop was not vectorized: nonstandard loop is not a v

not inner loop.
not inner loop.
not inner loop.

ectorization candidate.

mg.T(552):

(col. 7) remark: loop was not vectorized: nonstandard loop is not a v

ectorization candidate.

mg.f(1150):

(col. 7) remark: loop was not vectorized: loop was transformed to me

mset or memcpy.

mg.f(1150):

(col. 7) remark: loop was not vectorized: loop was transformed to me

mset or memcpy.

mg.f(1645):

mset or memcpy.

(col. 7) remark:

loop was not vectorized:

loop was transformed to

.. not just any tool. Use the Right Tools.

... maybe”?

allinea

allinea

High performance tools to debug, profile, and analyze your applications

Interactive demonstration

Adding vectorization to a linear algebra application

allinea allinea allinea 2allinea

PERFORMANCE

FORGE DDT MAP REPORTS

allinea

High performance tools to debug, profile, and analyze your applications

Coffee break

allinea allinea allinea 2allinea

PERFORMANCE

FORGE DDT MAP REPORTS

allinea

High performance tools to debug, profile, and analyze your applications

Technical session

Preparing applications for large scale

A
allinea allinea allinea allin€a
FORGE DDT MAP REPORTS

Agenda: Preparing applications for large scale

« Application design life-cycle
« Key concepts to address scalability issues

 ldentifying the limiting factors

allinea

Building a scientific application

BINARY -

*Compilation *Profile
*Tune

)

eLibraries
eData

* Complexity
*Parallelism
« Scalability

*Science

In your opinion, what is the most critical step?

Example: a sheet of paper (0.1 mm thick)

How many times do you need to fold a sheet of paper
- Somplexty to make it as thick as the Eiffel Tower (300m)?

- Scalability Answer: 22 times

Because: 0.1mm * 222 = 419m

allinea

Building a scientific application

)

ALGORITHM(¢ , -

*Complexi
«Parallelis
«Scalabili

*Profile

*Science
*Tune

In your o ical step?

mm thick)

) fold a sheet of paper
ower (300m)?

*Complexity to
*Parallelism

*Scalability An
Because: 0.1mm * 222 = 419m

allinea

Algorithms Complexity Analysis

Definition:

of time taken by the algorithm to run,

as a function of the length of the string representing the input.

Example: “Schoolbook Matrix Multiplication”

Input: matrices A(n,m) and B(m,p)
Output: matrice C(n,p)
For i from 1 to n:
For j from 1 to p:
Let sum = ©
For k from 1 to m:
Set sum « sum + A;; x By

Set C;; « sum

Return C

\/

The calculation time is a function of
“n x p x m!!

The time complexity of this algorithm is
written O(npm) or O(n3).
This is a cubic complexity...

... which is terrible!

Amdahl’'s Law

Definition:

Amdahl's law gives the theoretical speedup of the execution of a task at fixed

workload that can be expected of a system whose resources are improved.

Amdahl’s Law

f—"

18.00 g —
/ Parallel Portion
16.00 7 ———50%
/ —75%
14.00 — 90%
/ —95%
12.00
: /
§ 10.00 —
[-% /
T o ///
6.00 A
/

- L] = -] -] :4 :; 3 g] =

n

02
2048

Number of Processors

4096
8192

16384

32768

Example:
A seqguential programs runs in 20h.

A 1h-long part of this program cannot be
parallelized (parallel portion = 95%)

Amdahl’s law says:

This program will never run in less than
1h (speedup of 20).

Scalabillity in practice

Total Time = Computation + Message Latency + Message Transfer + Noise
Computation = Serial time + (Parallel Time / N)
Message Latency = number of messages * latency
Message Transfer = size of messages / bandwidth
Noise = pre-empting processes, swapping, faulting pages...
800}

600]
Blue : Amdahl’s law

Speedup
o
=
=

Purple : Amdahl's law with messages

I
=
=

=
—————————

0 1000 2000 3000 4000
Node Count

Tips for better scalability

Communication between neighbors as opposed to global
« All tasks communicate to all tasks: O(n?)!
« Tasks communicate with their neighbors only: O(1)!
Try and avoid global communications!

Improve load balance to reduce synchronization
* When processes synchronize, they go as quickly as the slowest
Check the time spent in synchronization tasks (e.g. MPI_Barrier, etc.)

Monitor the supercomputer noise
 Lost microseconds and milliseconds can turn into seconds

Pin your tasks, etc...

So..

. what is a scalable algorithm?

As a rule of thumb, an application will scale if:

Its algorithms have a good complexity

Its workload can be split into independent tasks
Communications are infrequent or unnecessary

Lots of calculations take place before messaging or I/O occurs
The system is under control

All the above remains true as the number of tasks grows.

Talking about system under control...

File Edit View Metrics Window Help
Profiled: mmultl c.exe on 8 processes, 1 node Sampled from: Thu Feb 11 12:30:51 2016 for 95.8s Hide Metrics..

i _
intermupts B g P WL I
281 ks

a

12:30:51-12:32:26 (95.759s): Main thread compute 85.6 %, MPI 14.4 %, File I/O 0.0 %, Sleeping © % | Interrupts 2.81 k/s; Zoom*1 =

£ mmultl.c X Time spent on line 63

Breakdown of the 84.1% time spent on this line:

[»]

55 & for(int i=0; i<size/nslices; i++)
55 L Executing instructions 100.0% S ——————
;_’, g fl fint 3=0; j<size;j Jj++) Calling other functions 0.0%
Q9 - - - -
59 double res = 0.0; Time in instructions executed:
60 . ‘ - | Scalar floating-point 0.0%
61 B for{int k=0; k<size; k++) L Vector ﬂoating point 3.8%m
) 62 { _ ‘ ‘ Scalar integer 1.6%1
g4 .13 . 63 res += A[i*sizet+k]*B[k*size+i]; Vector integer 0.0%
ié } Memory access* 95 5% —
s . Branch
<0 2 A6 * = . !)
e B } Clitsizetj] += res; Other instructions 0.0%
68 } *93.8% memory access instructions, 1.7% implicit
69 } memory accesses in other instructions, also counted in
70 =

> | their categories

Input/Qutput] Project Files | Main Thread Stacks | Functions

Main Thread Stacks
Total core time ~ MPI Function(s) on line Source Position
=/ main { mmultl.c:73
=Emmult mmult (size, nproc, mat_a, mat_b, mat_c); mmultl.c:156
84. 1% SN, _ res += Ali*size+k]*B[k*size+]]; mmultl.c:63
<0.1% =1 other
11.4% Al 11.3% ®=MPI Finalize MEI_Finalize(); mmultl.c:185
1.3% | smwrite mwrite(size, mat_c, filename); mmultl.c:177
1 140/ 1 1075 RANI Camal D N T P | r —ma —-—rnn —1 2 e maTm T TieTTET - ~ AW W P P o [N L o B B A |
Showing data from 8,000 samples taken over 8 processes (1000 per process) Allinea Forge 6.0.1 @ Main Thread View

allinea

allinea

High performance tools to debug, profile, and analyze your applications

Interactive demonstration

Preparing an application for large scale

allinea allinea allinea 2allinea

PERFORMANCE

FORGE DDT MAP REPORTS

allinea

High performance tools to debug, profile, and analyze your applications

A real life example

Bringing HemelB to Petascale with Allinea

A
allinea allinea allinea allin€a
FORGE DDT MAP REPORTS

UCL: HPC to fight aneurysms and save lives

« Challenges

Make surgical decisions within minutes (instead of hours)
following patients MRI scans

« UCL got HemelB to perform and scale to above 50k cores
« Fixed limiting performance bottlenecks and crashes at scale

« Study hemodynamics within the Circle of Willis for the 1t time

Full case study:

http://www.allinea.com/case-studies/education/application-
soars-above-petascale-after-tools-collaboration

allinea

Scaling iIssue — at 512 processes

hle View Search Window Help

profiled: hemelb on 512 processes Started: Sat Feb 8 10:18:36 2014 Runtime: 308s Time in MPI: 58% Hide Metrics...
Memory usage (M) F |
218 - 1526 (1083 avg) ;;—‘—5/—]
MPI call duration (ms) /_
0 - 11,7891 (65.7avg) . -

CPU floating-point (%)
o - 100 (11avg)

10:18:36-10:23:43 (307.730s): Mean: Memory usage 108.3 M: MPI call duration 65.7 ms; CPU floating-point 10.6 %;

H StepManager.h o IteratedAction.cc 3 I ™ StepManager.cc ¥
56 std::string name; [«]
57 Action(Concern &concern, MethodLabel method)
58 B concern(&concern), method(method)
59
60 }
61 Action(const Action & action) :
62 B concern({action.concern), method(action.method)
63 { [
64 }
65 B bool Call()
66 { -
94,7 REEEn o7 return concern->CallAction(method);
68 } s
69 }
70
71 typedef std::map<steps::Step, std::vector<Action> > Registry;
72
73 8 [**
74 * Construct a step manager]
75 * @param The number of phases, default 1.
76 * @param timers, Record the times for the steps to this timers cbject, if given
7 */
78 StepManager(Phase phases = 1, reporting::Timers * timers = NULL, bool separate_concerns = false);

o

Input/Output | Project Files | Parallel Stack View |

Parallel Stack View [ez)
Time A MPI Function(s) on line Source Position =
1.4% 0.1% [+ hemelb::net::IteratedActi... RequestComms(); IteratedAction.cc:27
1.5%
[= Call [inlined] CallActionsForStepistatic cast<steps::Step=(step), ©); StepManager.cc:127
o return concern->CallAction(method);
. EndIteration(); IteratedAction.cc:39
. propertyWriter->Write(sinulationState.GetTimeStep()]; PropertyActor.cc:90
= hemelb::extraction::... localPropertyOutputs[outputNumber]->Write({uint64_t) iterationhumber); PropertyWriter.cc:42
34.3% , - PMPI_File_write_at MPI_STATUS IGMORE); LocalPropertyQutput.cc:302
<0.1%
<0.1% =
<0.1%
<0.1%
0.2% =

Allinea MAP 4.2-34164

allinea

Showing data from 512000 samples taken over 512 processes (1000 per process)

caling iIssue — at 512 processes

hle View Search Window Help

profiled: hemelb on 512 processes Started: Sat Feb 8 10:18:36 2014 Runtime: 308s Time in MPI: 58% Hide Metrics...
Memory usage (M) I N
218 - 1526 (1083 avg) ;;ﬁ)
MPI call duration (ms) // /'
0 - 117891 (65.7avg) " . . -

CPU floating-point (%)
o 100 (11avg)

10:18:36-10:23:43 (307.730s): Mean: Memory usage 108.3 M: MPI call duration 65.7 ms; CPU floating-point 10.6 %;

H StepManager.h | o IteratedAction.cc 3 I ™ StepManager.cc ¥ I

56 std::string name;

- ActioniConcern &concern. Methadlabel methad) :
Input/Output | Project Files | Parallel Stack View |
rallel Stack View
ime - MPI Function(s) on line Source
1.4% 0.1% hemelb::net::IteratedActi... RequestComms();
w7 Rl 1% o . : _
= Call [inlined] CallActionsForSteplstatic cast<steps::Step=(step), 0);
hemelb::net::IteratedActi... return concern-=CallAction(method);
EndIteration();
propertyWriter->Write(simulationState.GetTimeStep());
: localPropertyOutputs [outputhumber] ->Write({uint64_t) iterationNumber);
343% . B._.1. 0. 1R HKi1343% PMPI_File_write_at MPI_STATUS_IGNORE);
<=0.1% <0.1
=0.1%
<0.1% 1
<=0.1%
roectrie 02" S LTI e i o .

thowinn data fram 512000 camnlec talkan muer 5172 nracaccac (10NN ner nrncacc)

Parallel Stack View

Time A MPI Function(s) on line Source Position
1.4% 0.1% hemelb::net:IteratedActi... RequestComms(); IteratedAction.cc:27
1.5% 1.3
= Call [inlined] CallActionsForStepi(static cast<step
1Action(nethod
EndIteration(); IteratedAction.cc:39
propertyWriter->Write(sinulationState.GetTimeStep()); PropertyActor.cc:90
= hemelb::extraction localPropertyOutputs [outputNumber] ->Write((uint64_t] iterationhumber); PropertyWriter.cc:42
34.3% 134.3% - PMPI_File_write_at MPI_STATUS IGMORE); LocalPropertyQutput.cc:302
<0.1% <0.1
<0.1%
<0.1% 1
<0.1%
0.2%

Showing data from 512000 samples taken over 512 processes (1000 per process)

Simple fix... reduce periodicity of output

Allinea MAP 4.2-34164

allinea

... leading to a bug!

File View Contrel Search Tools Window Help

(ST L BREELEfEIEE ! A~ &

Current Group: Focus on current: @ Group () Process () Thread Step Threads Together

T 24576 processes (0-24575) Paused: 17220 Playing: 7356 Finished: 0
Currently selected: (on nid09271. pid 30269, main thread WP 30269)
Create Group
Project Files B | = MpiEnvironment.cc 3¢] = LatticeData.cc 3 € xyzpart.c 3 ‘ Locals | Current Line(s) | Current Stack
Search (Ctrl+K)] € 546 if (allpicks[i].val != -1) [a] Locals @®
__ 547 allpicks[ntsamples++] = allpicks[i]; Variable Name Value]
ui Eemp:a:e.((fat = 548 } f-a\lp\(ks Ml 0x22ab8035e010
. o1 3c0st
temﬂatE‘:dICUOF-lBWCC gg? ’i'kvfs’g:‘;ii&t;g;pfégksal{picks) ; elmnts W 02520950
template_modifiers.cc 552 ' ' ~firstvtx <value optimized out>
template_namelist.cc 553 Al 0xbcz010
template pathops.cc 554 /* Select the final splitters. Set the boundaries to simplify coding */ WM <value optimized out>>
template_string.cc 555 for (i=1; i<npes; it+) <value optimized out>
ti £ oy LSt 2
t:mz::_c 556 mypicks[i] = allpicks[i*ntsamples/npes]; <value optimized out>
Timers.cc 557 mypicks[0].key = IDX MIN; S=1143373824
timing.c 558 mypicks[npes].key = IDX_MAX; ~19
UnitConverter.cc 359 mypicks “0)(25921.50 =
util.c 560 nisamples <value optimized out>
utilityFunctions.cc 561 WCOREPOP; /* free allpicks */ — | i-npes <value optimized out>
Vector3D.cc m 562 nrecv ——1065353216
Vector3DHemelb.cc 563 STOPTIMER(ctrl, ctrl->AuxTmr2); ||| T <value optimized out>
™ VelocityField.cc] 564 STARTTIMER(ctrl, ctrl->AuxTmr3); nvtxs | CRFZ] =
™ Viewpoint.cc = 565 ol I Bl
] = - [\.]_ 566 /* Compute the number of elements that belong to each bucket */ [+] Type: idx t
Input/Output } Breakpoints] Watchpoints Stacks | Tracepoints] Tracepoint Output } Logbook } Evaluate @®
Stacks ® | Expression | Value
Processes Threads Function ©

172200 17220 |='main (main.cc:37)

17220 117220 | = SimulationMaster::SimulationMaster (SimulationMaster.cc:63)

17220]17220[] [SimulationMast: nitialise (SimulationMaster.cc:154)

17220 J17220] = hemelb::geometry::GeometryReader::LoadAndDecompose (GeometryReader.cc:188)

17220 J17220[] eometry::GeometryReader::OptimiseDomainDecomposition (GeometryReader.cc:809)

17220 J17220] ptimisedDecomposition::OptimisedDecomposition (OptimisedDecomposition.cc:65)
17220 J17220[] ::Optimised Decompositios allParmetis (OptimisedDecomposition.cc:181)

17220 J17220[]

17220 J17220[|

7356 processes playing Connected to: lecomber@titan.ccs.ornl.gov !

Looking at the bug location in the code

T OO OIIVET LET. T D
F- € util.c 560
Fie - [utilityFunctions.cc 561 WCOREPOP; /* free allpicks #*/
" [+ = Vector3D.cc B 562
cur [+ [Vector3DHemelb.cc 563 STOPTIMER(ctrl, ctrl-=AuxTmr2);
A = VelocityField.cc | | 564 STARTTIMER(ctrl, ctrl->AuxTmr3);
:m’e [B Viewpoint.cc = 565
4] S “""'““"T'"”“[""'" Dl 566 /* Compute the number of elements that bel &8

I+

[Input/Output] Breakpoints] Watchpoints | Stacks | Tracepoints] Tracepoint Output] Logbook]
Stacks

t>

Processes Threads Function

17220 117220 | main {(main.cc:37)
17220 17220 | = SimulationMaster::SimulationMaster (SimulationMaster.cc:63) Il
17220 117220 1 HSimulationMaster::initialise (SimulationMaster.cc:154)

17220 17220] = hemelb::geometry::GeometryReader::Load AndDecompose (GeometryReader.cc:188)

] 17220 17220 1 = hemelb::geometry::GeometryReader::OptimiseDemainDecompaosition (GeometryRead—————1»
g 17220 17220] = hemeIb::gec-metry::decc-mpu5iti.u.n::0ptinj|i5gdDecc-mpc-5iti.r.1ln::0ptimi5edDgcumpq5i o
sad 17220 117220 | =l hemelb::geometry::decomposition::Optimised Decomposition::CallParmetis {Optim|

fed 17220 (17220] =l ParMETIS_V3_PartGeomKway (gkmetis.c:90)

v 17220 172201 [libparmetis Coordinate Partition (xyzpart.c:58)

17220 I 17220 I libparmetis PseudoSam Zpart.c:556)

7356 processes playing Connected to: lecomber@titan.ccs.ornl.gov !

The stack highlights this particular line

nwironment.ce 54 C xyzpartc 3¢ \

N 1kvsortii(ntsamples, allpicks); |

B®E

I+

/* Select the final splitters. Set the boundaries to
for (1=1; 1<=npes; 1++]

: mypicks[1] = allpicks[i*ntsamples/npes];

| mypicks[o].key = IDX_MIN;

myplicks[npes].key = IDX_MAX; .

vl ® o =
ERIEAR =
Ty ey T e

=

WCOREPCOP; /* free allpicks #*/

STOPTIMER(ctrl, ctrl-=AuxTmrz):
STARTTIMER(ctrl, ctrl-=AuxTmr3):

7356 processes playing Connected to: lecomber@titan.ccs.ornl.gov !

Here are the related variables... Optimized out

ler ! Need to compile with —O0!

by the compi

mvironmentee %f | C wwznartc 5l | .
‘ -k <value optimized out>
- lastvix ——1143373824
- -~ mype ~19
E : . . .
] i mypicks “Dx.?ﬁg._zl_ﬁﬂ s to
: - nisamples <value optimized out>
— E---anG <value optimized out>
~ || -nrecv ——1065353216
TS < value optimized out>
e - NVEXS o224y
- INIE
Type: idx_t
ST
ST S - =y
—

I+

7356 processes playing Connected to: lecomber@titan.ccs.ornl.gov !

Variables are much clearer when compiled

with low optimization options. Looking good!
HE_”"""T Variable Mame Value
+-allpicks Bl 22208055
| R —REn
1 | —— | E-mypicks A 0 22 67810
- - npes —— 24575 s to
ntsamples —— 1818550
-
s [=/ |4
ST T] Type: none selected
) Evaluate
[] | F¥nreecinn Waliie ____J IEd

I+

But the actual array index Is not looking good
at all... this shows...

Type: none selected

 —
v

Evaluate 0L

*] | Expression value

?---_-2;2332546[:3

v

o2z«
om:l
a0 o

i Type: int
Fange: from -2147229746 1o -1228204E
I 431 7223 processes equal

Poorore

[=] Fynrec<inm Valiio ____J Iela

=

L | I =]

!
- [_,'
r Type: nog Ah
Evi "t ﬂ |

Type: int

Fange: from -214 7255 f to -12282046
: AN 7223 processes ¥ al
Poador e

[] Fynrec<inm

Waliie ___-Jlelia

File Wiew Control Search Tools Window Help

b ¥ 3 B I Bt Bl B2 !
Current Group: Focus on current. @ Group

24576 processes (0-24575)

E=

¢ >

o

Process Thread Step Threads Together

Al Paused: 17223 Playing: Y7353 Finished: O

Currently selected: (on nid00194, pid 9481, main thread WP 9481)
Create Group
Project Files B ® | = ppiEnvironment.cc 3¢ £ wyzpartc % ‘ Locals | Current Line(s) | Current Stack]
Search (Cirl+k) € 551 ikvsortii(ntsamples, allpicks]);] CurrentLine(s) B
W VolumeTrars 552 Wariable Name Value
"-C- olumeTravial BS53 _ _ _ $-allpicks Bl 0: 2225580552010
B L wave.c 554 /* Select the final splitters. Set the boundaries to i . as
”Cr :ﬁ':ﬁ;em 555 for l{i=1; icnpes; i+_-+]| . Jfr-mypicks S 0 2267570
o B Wiitercc 556 mypicks[1i] = allpicks[i*ntsamples/npes]; npes — 24575
. wspaﬁec 557 mypicks[o].key = IDX_MIN; ntsamples —— 1818550
B — warEileWrite 558 mypicks[npes].key = IDX_MAX;
W W XdiMemRez 339
H e Xdiemwril 560 _
e XdiReaderd 561 WCOREPOP; /* free allpicks */ —
e B Xdrwriter.ce S62 E
F- B ¥miAbstract— 562 STOPTIMER(ctrl, ctrl-=AuxTmrz);
i wyzpart.c 554 STARTTIMER(ctrl, ctrl-=AuxTmr3);
- @ External Code - 565 = 4] [[v]
[4] | DI | [*] Type: none selected
Input/Cutput] Breakpoints] Watchpoints Stacks | Tracepoints] Tracepoint Output Loghook Evaluate &
Stacks (& # | Expression Valug
Processes Threads Function E"'-'EF‘?R‘?EM%
17223 17223 = main (main.cc:37) Type: int

17223 1172230] = SimulationMaster: SimulationMaster (SimulationMaster cc63)
172230 7223 1 EHSimulationMaster:initialise (SimulationMastercc154)

Range: from -2147259746 to -12282048

4917223 processes equal

17223 N7TF2230 = hemelb:geometry:GeometryReader:LoadAndDecompose (GeometryReadercc:188)

17223 7223] E hemelb:geometry: GeometryReader:OptimiseDomainDecomposition (GeometryReaderc
17223 N7TF223[0 = hemelb:geometry:decomposition: OptimisedDecomposition:OptimisedDecomposition
172230 NTF2230] = hernelb::geometry decomposition:OptimisedDecomposition:CallParmetis (Optimisec
172231172231 = PamvETIS_W3_PartGeomkway (akmetis.c:30)

17223 172230] E libparmetis Coordinate Partition (yzpart.c58)

17223 I 17223

libparmetis

PseudoSampleSont (yzpant.c.556)

7353 processes playing

allinea

High performance tools to debug, profile, and analyze your applications

Allinea new stuff and roadmap

More Is available under non-disclosure agreement!

A
allinea allinea allinea allin€a
FORGE DDT MAP REPORTS

Energy efficiency with Allinea’s tools

Energy

A breakdown of how the 3.6 Wh was used:
File Edit Wiew Metrics Window Help

Profiled: hydro on 16 processes, 2 nodes Sampled from: Thu jul 9 10:32:13 2015 for 164.9s CPU 62.9% -
Main thread activity
System 57.01%
CPU power usage A - = |t = - — L —_—
37.1 Winode I Mean node power 92.4 W [

1.1

System power usage

Peak node power 94w s

73.3 Winode
L]
10:33:01-10:33: 36 (34.797s, 21.1% of tatal): Main thread compute 0.3 %, OpenMF 2 %, MPl 64.7 %, File O 126 %, OpenMP overhead 0.5 %, Sleeping Significant energy iS wa.sted during Mpl Communica.tions |t may
© mainc X be more efficient to use fewer nodes with more data on each
280 E f ((H.nstep % 2) == 0 { node

13.0%. . i s e i, 28] hydro goduncl, &t H, &Hv, &Hw goduncy, &Hvw godunav];
Tiydro_godunoiz, dt, H, &Hhy, Giw, BHw);

Significant time is spent waiting for memory accesses. Reducing

} else {
hydro_godune 2, dt. H, &by, &Hw_godunov, &Hvw_godunav);

the CPU clock frequency could reduce overall energy usage.

ENERGY
EFFICIENT

APPLICATIONS

allinea

Quantify gains immediately

CPU

A brealdown of the 94.6% CP

Scalar numeric ops 11.7% 1

Vector numeric ops 0.0% |

Memory accesses s8.29%
|

Waiting for accelerators 0.0%

The per-core performance is memory-bound. Use a profiler to
identify time-cons ~ ~ ° oo ' °

Mo time is spenti En e rgy
vectorization advi

wwm A breakdown of how the 3.6 Wh was used:
CPU 62.9% 1N
System 37.1% I
Mean node power 92.4w [N
Peak node power 94w IS
Significant energy is wasted during MPl communications. It may

be more efficient to use fewer nodes with more data on each
node.

A | t Significant time is spent waiting for memory accesses. Reducing
ccelerators the CPU clock frequency could reduce overall energy usage.
A brealcdown of how e

GPU utilization 0.0%

\
Global memory accesses 0.0% |
Mean GPU memary usage 0.0% |

\

Peal GPU memory usage 0.0%
GPUs are available but are not used. Identify suitable hot loops with
a profiler and try offloading them to the accelerator,

The peak device memory usage is low. It may be more efficient to
offload a larger portion of the dataset to each device.

CPU

A brealkdown of the 2% CPU time:

Scalar numeric ops |
Vector numeric ops |

Waiting for accelerators 61.7% [

Memory accesses

Most of the time is spent waiting for accelerators. Use
asynchronous calls to overlap CPU and accelerator workloads.,

The per-core performance is memory-bound. Use a profiler to
identify time-consuming loops and check their cache performance.

Energy

A breakdown of how the 2.84 Wh was used:
CPU 28.4% W

System 71.6% N

Mean node power 163w I

Peak node power 175.83W [N

Energy usage appears to be optimal.

Accelerators

A breakdown of how accelerators were used:

GPU utilization g2.5% [N

Global memory accesses 40.4% [l

Mean GPU memory usage 9.6% |

Peak GPU memory usage 15.2% fI

Significant time is spent in global memaory accesses, Try modifying

kernels to use shared memory instead and check for bad striding
patterns.

The peak device memory usage Is low. It may be more efficient to
offload a larger portion of the dataset to each device.

Allinea R&D Programs in preparation for Exascale

 NRE Projects with HPC Centers
— ORNL: Application-level Trapped Capacity Reports
— CEA: Providing a scalable interface to CEA profiler (MALP)
« European projects
— Mont Blanc 2 : R&D on HPC systems using embedded technologies
— Horizon 2020: Towards Exascale computing

« ESIWACE : Excellence in Simulation of Weather and Climate in Europe

* NextGenlO : Next Generation 10 for Exascale

+ SAGE : Percipient Storage for Exascale Data-Centric Computing

+ ExaNest : European Exascale System Interconnect and Storage

+ ComPat : Computing Patterns for High Performance Multiscale Computing

« National Projects
— TSERO (UK) : Reducing energy consumption of HPC systems

allinea

Support for next generation systems

Intel KNL Support
— Support announced at ISC’2016 in Frankfurt (2 phases release)

ARMv8 Support (currently supported: Allinea Forge)

— Adding CPU metrics support for ARMvS in Allinea MAP
— Allinea Performance Reports for ARMv8 scheduled (H2020 ExaNest)

Nvidia GPUs Support (currently supported: CUDA 7.5)

— CUDA 8.0 expected as soon as Nvidia is ready

OpenPower Support (currently supported: Allinea Forge)
— Adding CPU metrics support for Power in Allinea MAP

— Allinea Performance Reports for OpenPower in R&D

allinea

Our vision: HPC best practices

Workload Schedulers
" (e.g. SLURM)

EFFICIENT
PROD.

ANALYZE

Demand for software
efficiency (Allinea Open Interfaces

v

Performance Reports) Yp——— (e.g. JSON APIs)

\ 4

Continuou_s Integration .
(e.g. Jenkins, etc.)
= — p——

{k

Demand for DEVELOP

developer efficiency)
(Allinea Forge) e

\ 4

Version Control
(e.g. CVS, etc...)

s
v

PERFORMANCE
OPTIMIZATION

(Allinea MAP)

Debug/optimize, edit,
commit, build, repeat

DEBUGGING

(Allinea DDT)

allinea

Summary

Prepare for Strengthen

application professional Help the

scientific
community

changes and development
migration workflows

» Change is inevitable » Reduce your costs * Allinea’s mission.

allinea

allinea

High performance tools to debug, profile, and analyze your applications

Thank you !

Technical Support team :
Sales team :

support@allinea.com

sales@allinea.com

A
allinea allinea allinea allin€a
FORGE DDT MAP REPORTS

mailto:support@allinea.com
mailto:sales@allinea.com

