This version (2024/10/24 10:28) is a draft.
Approvals: 0/1

<HTML> <!— — title: “Parallel I/O” date: December 5-6, 2017 keywords: - high performance computing - I/O header-includes: - <meta name=“duration” content=“10” /> — —> </HTML>

Input and output of calculations: always as file

* Size of I/O may vary: at least a flag, but maybe large data sets
* Intermediate files
* Checkpoints

VSC infrastructure

* No monitor
* No printer

Questions: immediately

Coffee: immediately

Comments/Feedback: yes, please!

Limiting factors to high performance

  • CPU performance
    • Integer
    • Floating point
    • Scheduler
    • Caches
  • Memory performance <html><!— * Number of memory banks
    • ECC (Error correcting code)—></html>
  • Network performance
    • Locality
    • (Partially) shared ressource
  • Storage
    • shared ressource
    • I/O throughput
    • IOPS: Input/Output Operations per Second

CPU: 10^10 operations per second

Memory: 10^8 operations per second

Network: 10^6 operations per second

SSD: 10^5 operations per second

HDD: 10^2 operations per second

High performance: throughput and IOPS

  • Throughput
    • Each node is limited by network bandwidth
    • Each storage server is limited by network bandwidth
    • Many nodes ⇒ high throughput
  • IOPS
    • Network latency
    • Block devices
    • HDD (Hard Disk Drive) latency
      • Seek time
      • Rotational latency
    • SDD (Solid State Drive) latency
      • Fetch time for a block

Latency should not dominate

Combine I/O operations

Methods

  • Buffering
  • Avoid many small files
  • Combine data in few large files
  • Parallel I/O
  • Introduction to I/O (this talk)
  • Storage technologies
  • VSC storage infrastructure
  • Application view to I/O
  • Performance hints and best practices for I/O
  • MPI I/O (overview)
  • NetCDF4: Network Common Data Form
  • PnetCDF: Parallel NetCDF
  • HDF5: Hierarchical Data Format
  • Concepts
  • Technology names
  • Management view

  • Storage~size
  • File~size
  • Highly~available
  • Temporary
  • Backup
  • Shareable:
    • Available in web browser worldwide?
    • Mounted on your desktop?
  • Visibility:
    • User, Group, All Users (=‘Other’)
    • Access control lists (ACLs)

<html><img src=“pictures/Performance_wc.png” alt=“user view” style=“position: static; vertical-align: center”/></html>

  • Number of files
  • Throughput
  • IOPS
  • Number of spindles

<html><img src=“pictures/Usage_wc.png” alt=“user view” style=“position: static; vertical-align: center”/></html>

  • sequential~access
  • random~access
  • write~once
  • append
  • modify
  • flush
  • locking (Deadlocks!)
  • byte range locking (Deadlocks!)
  • read~once
  • read~often
  • read~never (e.g. log files, snapshots)

<html><img src=“pictures/Secure_wc.png” alt=“user view” style=“position: static; vertical-align: center”/></html>

  • Redundancy
    • RAID: Redundant Array of Independent Disks
      • RAID levels (0,1,5,6)
    • Erasure~coding
    • How many copies
    • software~RAID
  • Repair~times
  • Buffer~Battery - supercapacitor
  • USV~UPS: Unterbrechungsfreie Stromversorgung - Uninterruptible Power Supply
  • Reliability: disk failures

<html><img src=“pictures/Technology_wc.png” alt=“user view” style=“position: static; vertical-align: center”/></html>

<HTML> <!— ![](pictures/Technology_wc.png){height=200px style=“float: right;”}—> </HTML>

  • HDFS: Hadoop Distributed File System
  • DAS: Direct Attached Storage (JBOD: Just a Bunch of Disks)
  • SAN: Storage Area Network
  • NAS: Network Attached Storage
  • Block~storage
  • Disk~partitions
  • LVM: Logical Volume Manager
    • Physical Volume (PV)
    • Volume Group (VG)
    • Logical Volume (LV)
  • Journaling File Sytems: XFS - ZFS - Ext4 - BtrFS
  • NFS - SMB (CIFS)
  • Inode
  • SCSI, SAS, SATA, NVMe, FC, iSCSI, SRP
  • 3.5“, 2.5” form factor
  • SSD: wear leveling
  • I/O scheduler
  • Object storage
  • Tiered storage
  • Tape storage

  • NAS: Network Attached Storage
  • Block~storage
  • Disk~partitions
  • LVM: Logical Volume Manager
    • Physical Volume (PV)
    • Volume Group (VG)
    • Logical Volume (LV)
  • Journaling File Sytems: XFS - ZFS - Ext4
  • NFS
  • Inode
  • SAS, NVMe
  • 3.5“, 2.5” form factor

Storage size - parallel file system - number of spindles - throughput

Temporary - locality - IOPS

Highly available - throughput

File size - number of files - storage size

Backup - locking

Storage size - read never

Throughput - random access

IOPS - random access

Throughput - sequential access

Storage size - redundancy

Highly available - RAID - erasure coding

Backup - redundancy

Highly available - USC - UPS

Highly available - buffer battery

Storage size - DAS - NAS - SAN

Highly available - HDFS

Visibility - object storage

Storage size - tiered storage

Technology available

  • Large disks
  • Fast computers
  • Lots of data

The result is called ‘Big Data’

New data is generated digitally

Data creation increases exponentially

Internet / Social networks / Mobile Devices

Internet of Things

  • Sensors everywhere create data
  • Growing exceptionally fast

Medicine / Genome

Science

  • Databases
  • Text
  • Video
  • Image
  • Sensor data

Characterization of Big Data by

  • Volume
  • Velocity
  • Variety
  • NoSQL
  • Object Storage
  • HDFS
    • Cheap building blocks
    • Replication
  • Hadoop
  • Requirement: linear scaling
  • Cloud computing
  • Yarn: framework for job scheduling
  • MapReduce: parallel processing, very well scaling
  • HBase: distributed database
  • Hive: data warehouse infrastructure with ad-hoc-querying
  • Pig: high-level data-flow language
  • Cassandra: distributed database
  • Flume: aggregate and move large amounts of data
  • Kafka: distributed streaming
  • Spark: compute engine for hadoop data, more flexible than MapReduce
  • Advertising / Sales
  • Problem analysis
  • Microtrends
  • Genomics
  • Archaeology
  • Science
  • pandoc/parallel-io/1_introduction_to_io/1_introduction_to_io.txt
  • Last modified: 2024/10/24 10:28
  • by 127.0.0.1